admin@kcseforecast.com

Logarithms

Use logarithms to evaluate: \( \sqrt[3]{\frac{(1.654)^{2}}{45.73 \times 0.56}}\)

No. Std. Form Logarithm
\(1.654^2\) \(1.654 \times 10^0\) \(0.2185 \times 2 = 0.4370 \checkmark\)
\(45.73\) \(4.573 \times 10^1\) \(1.6602\)
\(0.56\) \(5.6 \times 10^{-1}\) \(\overline{1}.7482\)
\(1.4084 \checkmark\)
\(0.4745\) \(4.7446 \times 10^{-1}\) \(\overline{1}.6762\)

\(\frac{\overline{1}.2 + 2.0286}{3} = \overline{1}.6762 \)

Kenya Certificate of Secondary Education, 2017

Use logarithms tables to evaluate: \[\sqrt[3]{\frac{6.72 \times (0.46)^2}{185.4}}\]

No. Std Form Log
\(6.72\) \(3.672 \times 10^1\) \(1.5649\)
\(0.46\) \(4.6 \times 10^{-1}\) \(\overline{1}.6628 \times 2 = \overline{1}.3256\)
\(0.8905\)
\(185.4\) \(1.854 \times 10^2\) \(2.2681\)
\(2.6224\)
\(\frac{2.6224}{3}\)
\(=\overline{1}.5408\)
\(0.3474\) \(3.474 \times 10^{-1}\) \(\overline{1}.5408\)

3. Evaluate \(\frac{76.12 \times 4087}{\sqrt{841.9}}\) correct to 3 S.F.

No Log
\(76.12\) \(1.8815\)
\(\times 4087\) \(+ 3.6115\)
Numerator \(5.4930\)
\(5.4930\)
\(841.9^{\frac{1}{2}}\) \(2.9253 \div 2\)
Denominator \(1.4627\)
\(-1.4627\)
\(4.0303\)
\(10730\)

\(\frac{76.12 \times 4087}{\sqrt{841.9}} = 10730\)

No. Std Form Log
\(83.46\) \(8.346 \times 10^1\) \(1.9215 + \)
\(0.0054\) \(5.4 \times 10^{-3}\) \(\overline{3}.7324 = \overline{1}.6539\)
\(1.56\) \(1.56 \times 10^0\) \(0.1931 \times 2\)
\(0.3862 \\ \overline{1}.6539 - 0.3862 = \overline{1}.2677 \)
\(0.5700\) \(5.7 \times 10^{-1}\) \(\overline{1}.7559\)

\(\frac{\overline{3}}{3} + \frac{2.2677}{3} = \overline{1}.7559\)

use Logarithms to evaluate

\[\sqrt[3]{\frac{(1654)^{2}}{4573\times0.56}}\] (4 marks)

Solution

NoStdLog
1654\[(1.654\times10^{3})^{2}\]0.4316
4573\[4.573\times10^{3}\]1.66026
0.56\[5.6\times10^{-1}\]\[\bar{1}.7482\]

0.4744 \[= 4.744 \times 10^{-1}\]

\[\bar{1}.0286 \div 3\]

= 0.67625

N= (1.654)2

No

Denominater

45.73

0.56

0.4744

(1.64×100)2

(1.64×102

4.573×101

5.6×10-1

4.1744×10-1

std

0.4370

1.6602

1.7482

1.4084

44.1744×10-1

log

0.4370

-

1.4084

-1.6762

T.02863

log

0.4370

-

1.4084

T.0286 ÷ 3