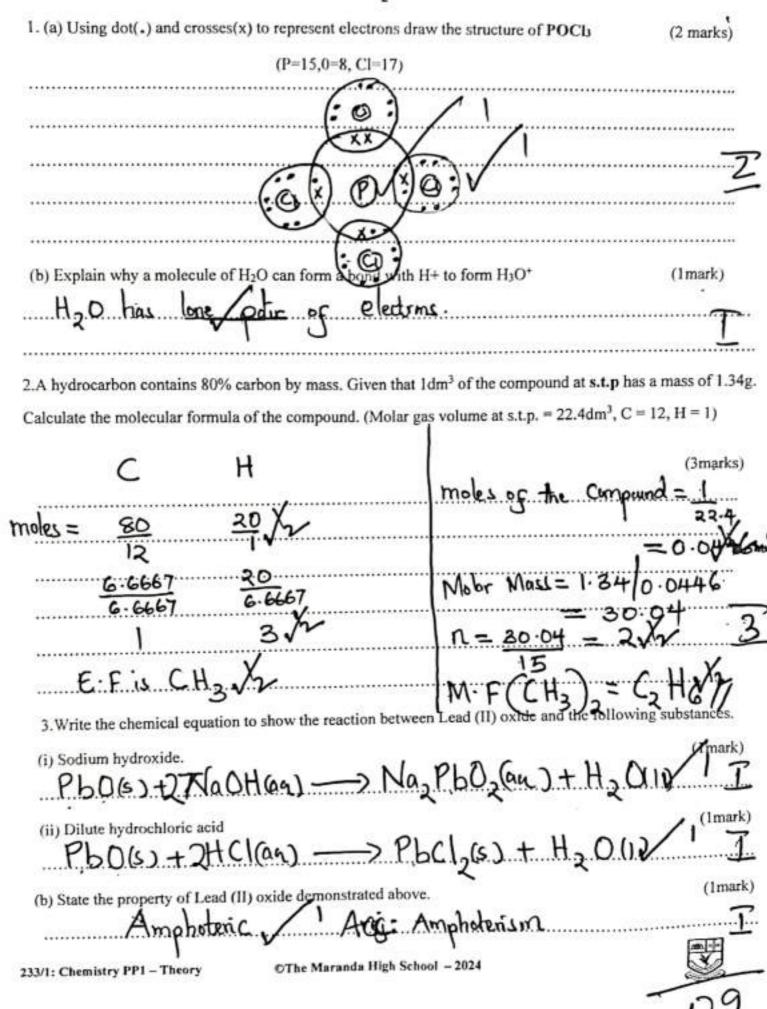


MARANDA HIGH SCHOOL

Kenya Certificate Of Secondary Education

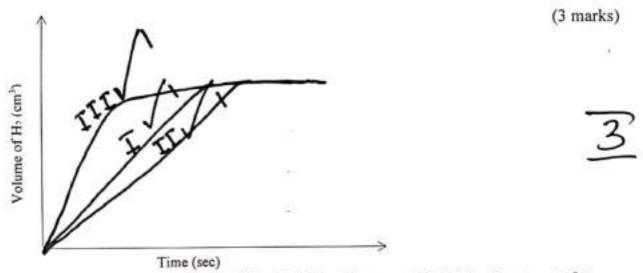
THE 2024 MOCK EXAMINATION


233/1	CHEMISTRY	PAPER 1	
	June, 2024	TIME: 2 Hrs	
Name:M	G .	Admission No:	
Stream:	Signature:	233/1 - CHEMISTRY Monday, 3 rd June, 2024 Morning	
Instructions	Į	8.00-10.00 Am	

- (a) Write your name, admission number, date, stream and signature in the spaces provided above.
- (b) All answers must be written in the spaces provided in the booklet.
- (c) This paper consists of 12 printed pages with 27 questions. Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing
- (d) Candidate should answer the questions in English
- (e) All working MUST be clearly shown where necessary.
- (f) Mathematical tables and silent electronic calculators may be used.

FOR EXAMINERS'USE ONLY

QUESTIONS	MAXIMUM SCORE	CANDIDATE'S SCORE
1-27	80	


4. Sulphur (IV) oxide reacts with potassium dichromate (VI) according to the	equation below.
$3SO_{2(g)} + Cr_2O_7^{2-}(aq) + 2H^{+}(aq) \rightarrow 3SO_4^{2-}(aq) + 2Cr^{3+}(aq) + H_2O_{(I)}$	
(i) What is the oxidation number of chromium ion in $Cr_2O_7^2$.	(1mark)
$2Cr = +12$ $Cr = +6\sqrt{2}$	<u>T</u>
(ii) State and explain the observation made in the above reaction Orange acidified Polassium dichronate (green due to reduction of Cr207	V) Changes to
5.Nitrogen(I)oxide is a colourless gas with pleasant smell and causes insensitivit	ty when inhaled, but it is not
reactive at room temperature. However, it relights a glowing splint (a) Explain why the gas relights a glowing splint	(lmark)
Unstable and Supports Combustion C.7. give O2 which supports Combustion)	Decomposed to
give O2 which supports combustion)	<u>J</u>
(b) One of the uses of nitric(V) acid is purification of metals such as Gold, expla	in why Nitric(V) acid is used
in purification of metals	(1mark)
(c) To a sample of a salt in a test tube, add 2cm3 of freshly prepared Iron (II) sulp	- 77-74
test tube and slowly add concentrated sulphuric (VI) acid. Which ion does this	test aim to confirm? (1 mark)
NO= Nitrate ion 1	
6. Name the apparatus drawn below and give its use	
8	-06
	06

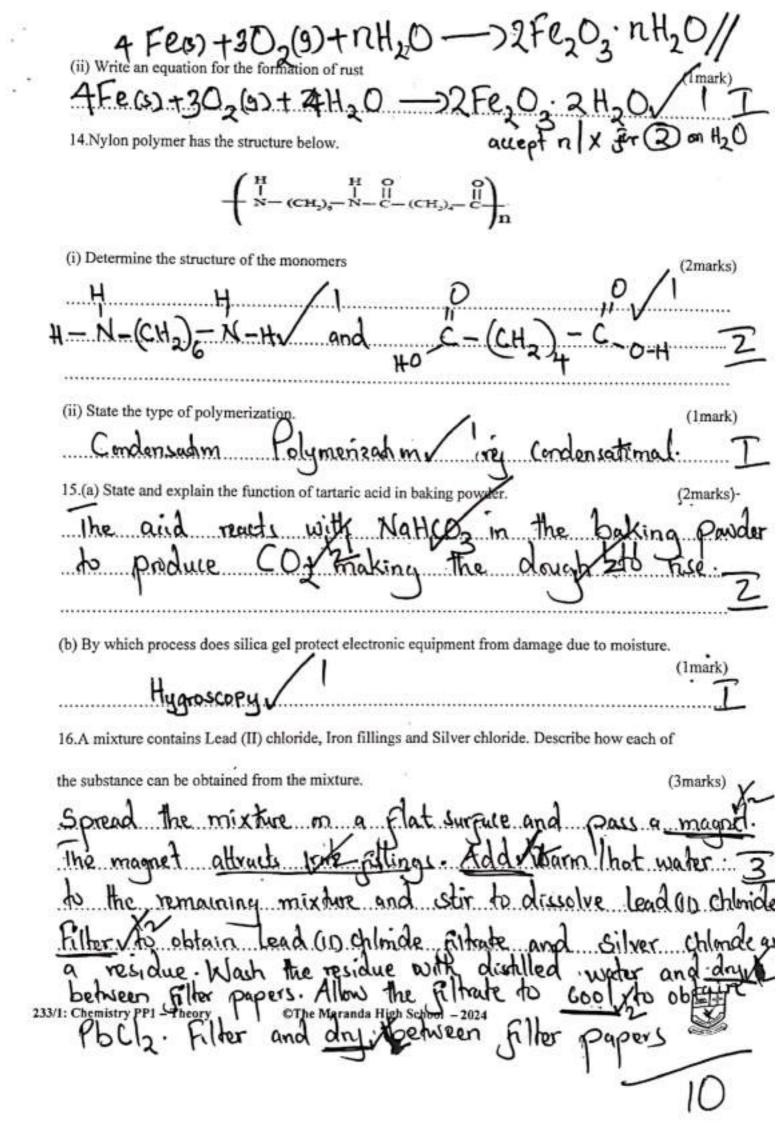
70000	4
(a) Name Rebork Flask	(Imark
A STATE OF THE PARTY OF THE PAR	
Preparation of nitric (v)	· 1 / 1 (1mark)
Treparation of nitrac(v)	auav
7. When a current of 0.82A was passed for 5 hou	urs through an aqueous solution of metal Z, 2.65g of the
metal was deposited. Determine the charge on t	the ion of metal Z. (1 Faraday = 96500 coulombs,
Relative atomic mass of $Z = 52$)) Vanarks
	2.65 = 52X
May deposited = R.A.N	1XQ Charge x 96,5
Man deposited = R.A.N. Charge	exiF Charge = 52x
•	A A
2.659 = 52 x Co.8	32x5x60x60) Charge = 3+ 7=1
Charge X	(96500 reit3
8.The scheme below shows the energy changes to	that take place between ice, water and steam.
Study it and answer the questions that foll	
H_2O_{10} $\xrightarrow{\Delta H_1}$ H_2O_{10}	ΔH ₂ H ₂ O _(e)
ΔH_4	ΔΗ3
(a) What name is given to the energy change	ΔH ₁ ?/ (1mark)
latent heat of fusion	Molor heat of rusion. T
(b) What is the sign ΔH ₂ , give a reason	(2marks)
Negativa ! Loss of bo	Eat Cexothermic)
2 3	2

.+	······
	A 8

 The table below gives three experiments on the reaction of excess hydrochloric acid and 1.8g of zinc done under different conditions. In each the volume of gas was recorded at different time internals

Form of Zinc	Hydrochloric acid solution
Powder	1.0M
Granules	1.0 M
Powder	2.0 M
	Powder Granules

On the axis below draw and label three curves that could be obtained from such results.


The solubility of copper (II)sulphate at 75 °C is 55g/100g of water and 19g/100g of water at 15°C.

What mass of crystals would be deposited if a saturated solution (II) sulphate in 150g of water at 75°C then cooled to 15°C	on was made by dissolving X g of Copper (3marks)
	At 15°C
At 75°C	15 1009 of H20 - 199 of salt
15 100g of H20 - > 55g of solt	= 28.50
= 82.59/2	Mass of Gystale = 82.50 285
	= 549// 3
	·

11. Potassium is isotopic and has a relative atomic mass (R.A.M) of	39.5, work out the percentage
abundance of each isotope. The three isotopes are ³⁹ K, ⁴⁰ K and ³⁸ K	(0.01%) (3marks)
39.5 = 39x(99.99-4)+(49xx)+(3819.01)	y = 3950 - 3899.99
100	= 50/91/-
=>3950=3899.61-39y+40y+0.38	
3950=3899.99+4	TK= 50.01/2
12.A green solid D was heated until there was no further change. The	ne following observations were made.
(i) A colourless liquid condensed on the cooler parts of the test tube	
(ii) A colourless gas which changes acidified potassium dichromate	(VI) green was formed
(iii) Brown residue S was left	
(a) Give the identity of solid D Hydrated Irm (11) Sulphute Fes	04-7H20 / Irm (1) sulphut
(b) How can you chemically test the colourless liquid Changes white anhydrous copper (1) Sulph Act. Cobalt (1) Chloride	use to blue hydrated I copper (tr) sulphut
(c) Name the residue S Irm (11) Oxide / 1	xapan)
13.(i) State the most effective method of preventing rusting?	(1mark)
Alloying. VI	T
(ii) Explain why galvanizing rather than tinning is a better method of Zinc is more reactive than to Can be easily saratched.	prevention of rusting. (1mark)
Can be easily seratched.	
120 27	

OThe Maranda High School - 2024

233/1: Chemistry PP1 - Theory

17.In the industrial extraction of lead metal, the ore is first roasted in a furnace. The solid mixture obtained is then fed into another furnace together with coke, limestone and scrap Iron. State the function of each of the following in this process.

(a) Coke Reduce	CO2 to	CO; mair	reducing	agent	(1 mark)
		••••••		*****************	(1 (1 mark) which T
(c) Schap Iron	thermal with SiOz Ozywhich i	Ho form	An Configura	co/icate	(l mark)
Reduces	excess rem	aining Pl	bs to lea	dv '	

18.Complete the table below

(3 marks)

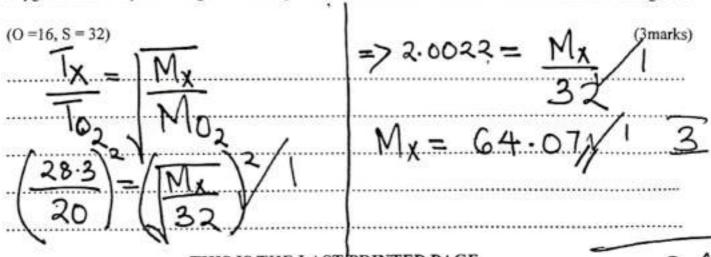
Binary electrolyte	Cathode equation	Anode equation	Observation at the anode
Lead (II)Iodide	Pb ²⁺ (t) + 2e ⁻ → Pb ₁	, 2In-> Igh :	Purple vapour
Copper (II)Oxide	Cuity+2e-> County	1	4e- rekindless a glaving splint.

19. The table below shows atomic and ionic radii of some elements represented by letters R, S, T and U.

(Not actual symbols). Study it and answer the questions that follow.

Element	Atomic radius (nm)	Ionic radius (nm)
R	0.174	0.099
S	0.203	0.133
T	0.099	0.181
U	0.136	0.065

(1) Name one substance that can be used as electrolyte in the above cell.	(1 mark)
Zinc nitrate Lead (1) nitrate V & both.	Ţ
(ii) Which of the electrodes is the anode?	(1mark)
Zinc / Zinc rod /	<u>T</u>
22. Radioactive polonium (Po)mass number 212 and atomic number 84 was detected	in a sample of
water. The water had an activity of 1000 counts per second.	
(a) If the water is boiled explain whether the activity would be affected or not. No effect tricrease reactions. affect nuclear reactions.	doesint
(b) Given that polonium resulted from Bismuth (Bi) following emission of a beta (β)	particle,
write a nuclear equation for the decay.	(1 mark)
(c) State one application of radioactivity in the paper industry.	+° I
(c) State one application of radioactivity in the paper industry.	(1 mark)
Befa radiation is wed to determine Thickness 23.A mixture of magnesium powder and copper powder was reacted with dilute hydro solution was the filtered. Name:	O 1.
(a)(i) The residue	(lmark)
(ii) The filtrate Magnesium Chloride Solution. 1	(1merk)
VI: Chemistry PPI - Theory O'The Maranda High School - 2024	


(b) Write an ionic equation for $M_{\alpha(x)} + 2 h$	the reaction that takes place 11 11 11 11 11 11 11 11 11	0 + H ₂ (9)/ 1(1mark)
_	23 and element B has atomic mass 7 a	
neutrons respectively.		
(a) Write the electron arrangen A - 2,8,1 B - 2,1		(1mark)
(b)Which element has higher i	onization energy? Explain	(2marks)
Accept	Iler Internit radius Actual symbol d answer the questions that follow	hence stronger nuclear ch
CH ₂ ClCH ₃	HCl Process	
Compound Q State;	Cl ₂ Rrocess F	CH₂OH H¹/KMnO₄
(i)The conditions for process R - Phosphmi(v) and - Pressure of 60 - Pressure of 60 (ii)The type of the reaction rep	(60-70) Any 20 12ml	Acc. Heat I'm & Mhark) Reg. H2504 Jr & (limark)
(iii) Name of compound U Ethonoic aci	neńzatim/ folymurizati réj addition d/ rej jounula	(Imark)
233/1: Chemistry PP1 - Theory	©The Maranda High School - 2024	

	Long glass tube
7///0	117
W.	- V
Cotton wool soaked in concentrated hydrochloric acid	Cotton wool soaked in methyl orange solution

After sometimes, the cotton wools X, Y and Z changed colour in turn.

(a) What were the colour changes?	(1mark)
Mettyl rrange indicator changes to pinklned	<u>T</u>
(b) Which cotton wool changed colour first?	(1 mark)
X / 1	I
(c) Explain why the cotton wools did not change colour at the same time.	(1 mark)
HCI diffuses and reaches point X, Z	and Y at -
different times.	

27.A sample of unknown compound gas X is shown by analysis to contain Sulphur and oxygen. The gas requires 28.3 seconds to diffuse through a small aperture into a vacuum. An identical number of oxygen molecules pass through the same aperture in 20 seconds. Determine the molecular mass of gas X.

THIS IS THE LAST PRINTED PAGE

233/1: Chemistry PP1 - Theory

©The Maranda High School - 2024