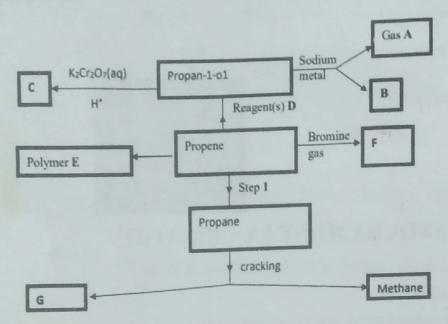
Name	Index No//
School	Adm. No
Candidates Signature:	Date
CHEMISTRY MARKING PAPER TWO CHEMIE	K
July/August, 2023 Time; 2 ½ hours	KABOURA

KABOURA JOINT EXAMINATION

Kenya Certificate of Secondary Education (K.C.S.E)

INSTRUCTIONS TO CANDIDATES

- Write your name, school and index number in the spaces provided above.
- Sign and write date of examination in the spaces provided above.
- · Answer ALL questions in the spaces provided.
- Mathematical tables and silent electronic calculators may be used.
- All workings MUST be clearly shown where necessary.

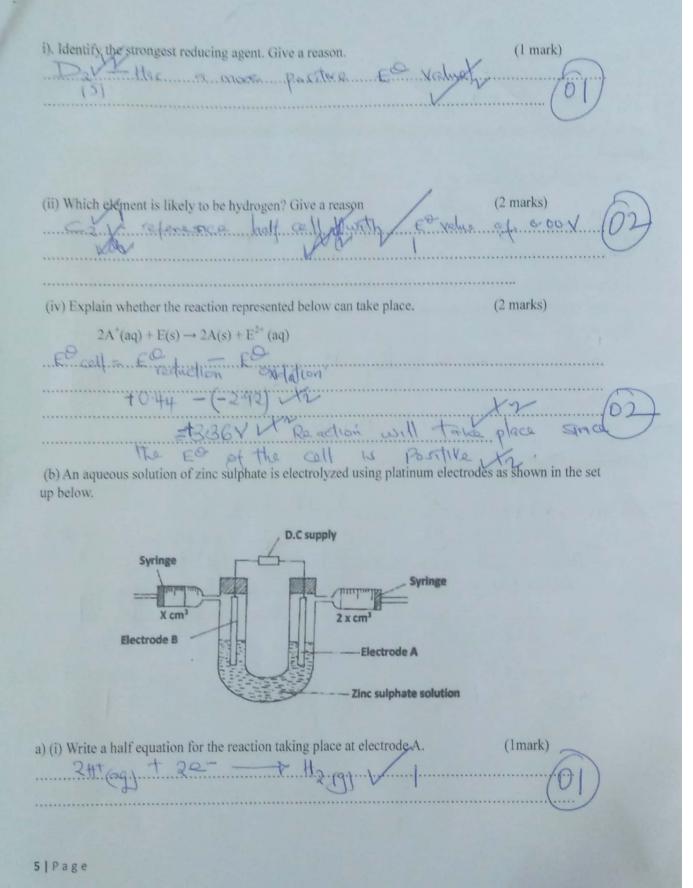

Questions	Maximum Score	Candidate's Score
1	10	
2	12	
3	13	
4	10	
5	10	
6	13	
7	12	,
TOTAL	80	

This paper consists of 13 printed pages

Candidates should check the question paper to ensure that all the

Papers are printed as indicated and no questions are missing.

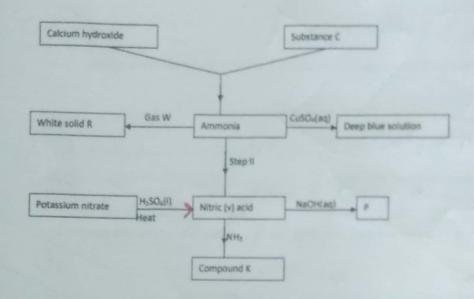
1. The scheme below shows a series of reactions and compounds. Study it and use it to answer the questions that follow.



(a) Identify the following compounds and products	(3marks)
Attydogen gas Xx	B
Sodium Prop-oxide 1/2	(02)
c Proponois acid No	EE(2)
Poly Properso Ka	
F 1,2-dibromo Propare IV	G
Ethene Ita	accept the formula.
(b)State 2 conditions for step 1 to occur.	(2 mark)
(b) State 2 conditions for step 1 to occur	
High Precoure With	(02)
Michael Palladitho Stalyst	
(c) Write an equation for the formation	
	(1 mk)
Compound F	101
CH3CHCH2 + Br2 - + CH3 CHBr CH2Br	VICI

2|Page

***	Com H ₃ C						
***	Cons		Luphune				
(e)	State or	e industrial use o				(1 marl	61
(f) Draw t	ne structure of a s	section of polymer E	Showing three re	peated un	its. (1 mark).
E	# # # C	H H	+ + 7 	1			
Per							* * 400 * * * * *
							ollow. O
2.	The grid		rt of the periodic tab				ollov. O
2.	The grid	below shows pa	rt of the periodic tab	ble. Use it to answ	er the que	estions that fo	ollov!.O
2.	The grid	below shows pa	rt of the periodic tab				ollovi. O
2.	The grid	do not represent	rt of the periodic tab	ble. Use it to answ	er the que	estions that fo	ollow. O
2.	The gride letters	do not represent	rt of the periodic tab	ble. Use it to answ	er the que	estions that fo	ollow. O
2. Th	The grid pe letters P Q	below shows pardo not represent a	rt of the periodic tab	S T	er the que	estions that fo	ollow. O
(a) Which	P Q of the eletters	below shows pardo not represent a	rt of the periodic tal actual symbols.	S T T Explain	er the que	v w (2 marks)	lentify

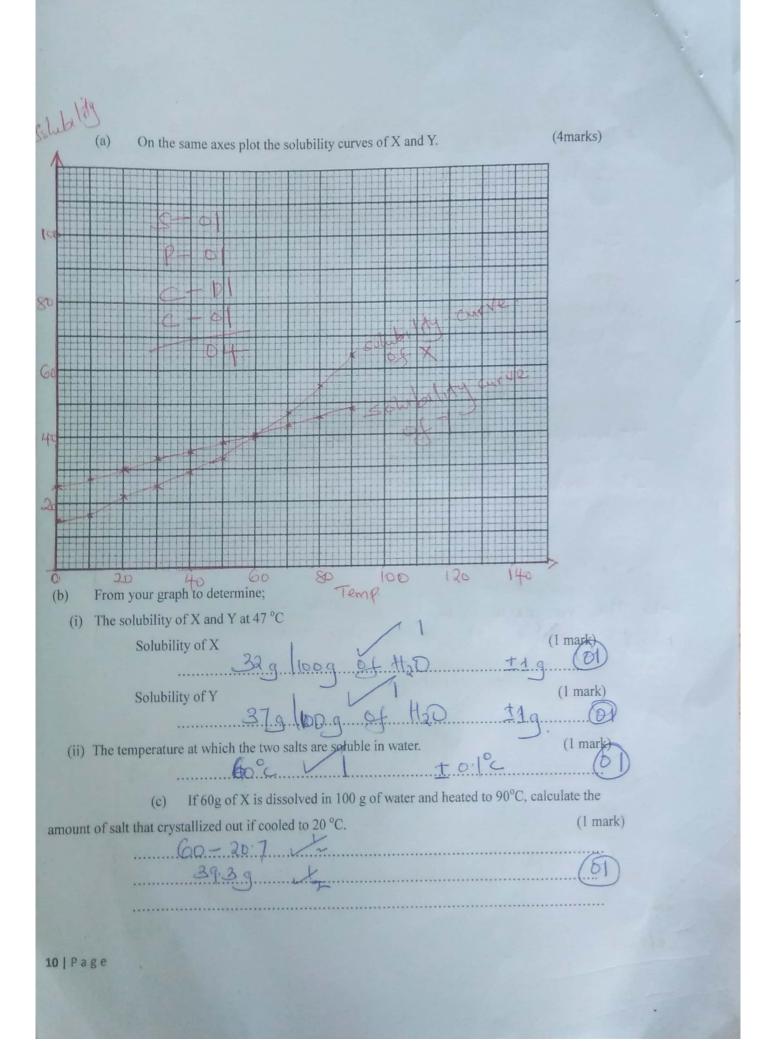

U- readily go	ling One	electrons to be stable (02)	
Re has more	protone than	(2 marks) Is larger than that of R. I hence Stronger force (52)	
(d)Give the formula of one state	ole ion with an electr	ron arrangement of 2.8 which is:	
(i) A Negatively charged divale	ention.	(lmark)	
(ii) A Positively charged mono		(1mark)	
(e). Given that the mass numbe	r of W is 40. Write d	lown the composition of its nucleus. (2marks)	
22 neutrons	//	(02)	
		(f)Write the	
formula of the compounds form	ed when Element R	and X react. (1 mark)	
property of the structure formed - conducts elec	when R and X bond	molten & aqueau state (01)	
3.a). Study the standard electrod not represent the actual symbols	e potentials below a	nd answer the questions that follow. The letters do	
Eº volts			
E^{2} (aq) + 2e	E _(s)	-0.44	
A+(aq) + e'	A _(a)	-2.92	
$V_2D2(s) + e$	D-(aq)	+1.36	
C+(aq) + e-	½ C2(g)	0.00	
B* _(aq) + e*	B (s)	+0.52	

(ii) Identify electrodes A	(1 mark)
Cathode	
(iii) State and explain the observation at electrode B if-copp	per plate was used instead of platinum
electrode.	(2marks)
A salvalers govern	
Bubbles of a colombess 995	are Liberard
OH long are frefore Mally	michage and want
OH sons are preferentially	SOCIA Garage for 00 minutes (RAM
(b) 0.22g of metal Q is deposited by electrolysis when a cu	rrent of 0.00A flows for 99 finitides. (1941)
of $Q = 184$, $1F = 96500c$) (i) Find the number of moles of	2 deposited.
Q-06199x60	
No 06 moles = 0:22 /	(0)
=D.001196	moles 2
(ii) Determine the value of n in the metallic ion Q ⁿ⁺	
	(3marks)
9-0:06 x99 x60 1/2 356 4 C /2	1 = 96500 C
0.0011969:839=356.4 e 20	2=2980800 (03)
0.001196 PORCO = 356.4 C	8080 13 08 1 -
100 l84 = ? 9	650
	n=3 / /
184X 356.4 / = 298,080°C	
0-001196	4.2
0.52	13 _

4

I. Use the flow chart drawn to answer the questions that follow:

a) Identify:	
i. Compound C	(lmk)
Ammonium Chloride VI	(D)
ii. Compound K	(Imk)
Ammonium Vitrate /	(01)
b) Write the equation for the following:	
i. Calcium hydroxide and substance C.	(lmk)
Co(0H)2 + 2NH4CI -> Cacl2 + 2H27	O T 2NH (U)
ii. Gas W and ammonia.	(1)(1mk) d1
HH2 + HCl -> NCHHClg+VI	(6)
c) Identify the catalyst in step II.	(lmk)
Platinum - Rhodium catalyst /	(01)
d) Write the formula of the deep blue solution and compound K.	(lmk)


7 | Page

e) State the type of reaction that produces P.	(1mk)
Heutralisation	(01)
f) State one use of compound K.	(1mk)
used as a fortilizer	(01)
II. When compound N is heated, a brown gas is evolved and a yellow residue is left on co	oling.
a) Name:	
i). The yellow residue.	(lmk)
Lead (11) Oxide (PbO)	(01)
ii. Write equation for decomposition of solid N.	(lmk)
2 Pb(NO3) 2 -+ 2PbO + 4HO2 + O2	1 (0)
5. The flow chart below shows the extraction of Zinc from two ores. Study it to answer the that follow.	questions
Gas Q Gas P	10
ZnS Roaster CaCO ₃	1
Solid P.	
Oxygen gas	
Reduction Solids S	
Limestone Chamber Solids S	
Molten Zinc	
Motor Lane	
i) Give the common names of the following ores:	(1mark)
Ins Zinc blende	(ol)
CaCO3 Mataritée Linestone /	
	(1mark)
ii) Name the gases P and Q	(mmx)
P. Sulphur (N) Oxide	(0)
Q caterin carbon (N) oxide	

8 | Page

iii).	Name the solid	s R and	is.		,							
R	ZInc	0	xide	2/							(1mark)	(62)
S	Colks.			1.1							(1mark)	
iv)	Write a chemica	al equa	tion for	the reac	tion tha	t produc	es Zinc	metal.			(lmai	·k)
	Zn 0 +								<u>/</u>		()	.)
v)	What is the pur	pose of	adding	limesto	ne in the	e reduct	ion char	mber?	/1		(1mar	DI
-	produce		- 0	14	ich 1	s u	sed	to	rem	ove !	mpu	igher.
	To give	tuo			U.S.	ed_	for	red	uction	0.6	.Zn!	0:
****							3			0	(2ma	
vi)	Give two uses	of Zino	metal				1				(D)	il KS)
-6	alvanizm	9	1001	r Cr	netal	9)1			1			
-1	ralvanizm Na Kina	Deli	ter	cas	ma.	15	dr	y P	allen.	R.J.	Bu	Jano
) Name two oth		-									
V11) Name two our	ier mat	isti ies ti	iai can i	oc estac							
											(1 m	ark
5. (a)	The maxi	n solub	oility.		-1	-58	Lite	rea w	ired	to .	Solur	de
15	The maxi	ina.ll.	MW	1.6	ma	la	der	noer	dure	-/	.1	01
009	of wa	12r			Labelli ei a	of two	calte X	and V a	t differe	nt		1
(b)	In an experime temperatures,	ent to d	etermin date rec	e the sol	er obser	vations	as show	n below				
	temperatures,											
	Temperature	0	10	20	30	40	50	60	70	80	90	
	(°C)						22.2	40.0	47.0	55.0	64.0	
	Solubility of X in g/100 g of H ₂ O	14.3	17.4	20.7	25.0	28.5	33.3	40.0	47.0			
	Solubility of Y in g/100 g of H ₂ O	25.0	27.5	30.0	32.5	35.0	37.6	40.1	42.4	45.0	48.0	

9|Page

(d) State what would happen if a mixture salt X in 100 g of water and 30 g of Y in 100 g of water were cooled from 90 °C to 70 °C. (3 marks) (3 marks)
Saft 1/1 South Signature 29 Day but no 63
(e) State one application of solubility. 17.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
Fractional crystellizations 1
7. (a) When steam is passed over heated charcoal as shown below, Carbon (II) oxide and hydrogen gas are formed
(i) What name is given to the mixture of gases produced above? (1mk)
Wicker grav 1
(ii) Give two uses of Carbon (II) oxide gas which are also uses of hydrogen gas (2mks)
AS effect VI
(b) The diagram below represents a charcoal burner. Study it and answer the questions that follow
Flame SSSSSS Zone I
Charcoal Zone III
(i) Write equations for the reactions occurring at Zone I
Zone I $2 CO_{G}$ $1 O_{2} O_{3}$ $1 O_{2} O_{3}$ $1 O_{3} O_$
2CO201 + C(5) + 2CO91 (10)
11 Page

(ii) What is the colour of the flame Clmk)
(iii) The ash that collects in the lower compartment was dissolved in water and filtered. Suggest the PH value of (1mk) Between 7-10 (weak base)
(c) Carbon (II) oxide gas can be prepared in the laboratory by a process shown below
$(COOH)_2$ cone H_2SO_4 $CO_2(g) + CO(g) + H_2O(l)$
(i) State the function of the concentration sulphuric (VI) acid in the process above (1mk) State the function of the concentration sulphuric (VI) acid in the process above (1mk) State the function of the concentration sulphuric (VI) acid in the process above (1mk)
(ii) How would you remove Carbon (IV) oxide gas form the mixture of Carbon (II) Oxide and carbon (IV) oxide gas The mixture through concentrated that kott (a)Ott
(d) What volume of Carbon (II) Oxide at r.t.p is needed to reduce 106g Iron (III) Oxide to iron metal? (0=16, Fe=56, Molar gas volume at r.t.p = 24 litres) (3mks) (
12 Page