Name:	Adm No Index No
School:	Class
Date:	Signature:

233/1

CHEMISTRY THEORY

PAPER 1

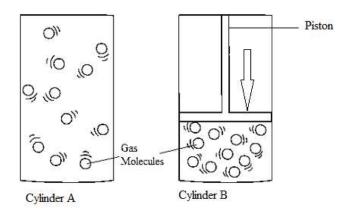
TIME: 2 HOURS

KASSU JET EXAMINATIONS JUNE 2022

Instructions to Candidates

- (a) Write your Name, Adm Number and index number in the spaces provided above.
- (b) Sign and write the date of examination in the spaces provided above
- (c) Answer ALL the questions in the spaces provided in the question paper
- (d) KNEC Mathematical tables and/or electronic calculators may be used for calculations
- (e) All working **MUST** be clearly shown where necessary
- (f) This paper consists of 12 printed pages
- (g) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing
- (h) Candidates should answer the questions in English

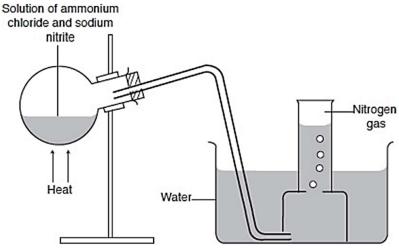
FOR EXAMINER'S USE ONLY


Question	Maximum score	Candidate's score
1 – 29	80	

This paper consists of **12 printed pages**. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

1. 	Give one danger of abusing bhang	(1mark)
2.	Give one reason why a conical flask is preferred during a titration experiment	over a beaker (1mark)
3.	The atomic number of iron is 26 and its mass number is 56. How many of each following particles is in Iron (III) ion?	h of the
4.	i. Protons	(½ mark) (1 mark) (1mark)
	Combustion tube Iron Powder	
	Gas X Heat Water Heat	
	Between point B and point M which one should be heated first? Explain.	
	Write a chemical equation that occurs in the combustion tube	(1mark)
c)	State and explain the observation made when gas X is passed over heated copp	per (II) oxide (2 marks)

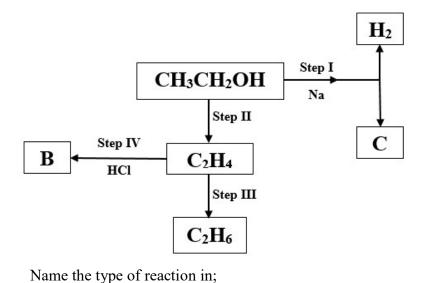
5.	Lead carbonate was heated strongly in a boiling tube. Write the equation for the reaction that occurred. (1 mark)			
6.	A mi Desc	xture consists of three solids: lead (II) carbonate, iron filings, and so ribe how to obtain pure lead (II) carbonate from the mixture.	odium carbonate. (3 marks)	
	•••••			
7.	Chlo (VII)	rine gas is prepared in the laboratory by reacting a mixture of Potass and substance H. when dry chlorine is passed over heated aluminius formed.	sium manganate	
	i.	Identify substances H and S	(1 mark)	
		Н		
	ii.	S Name the drying agent used to dry chlorine gas	(1mark)	
		State the observation that will be made when chlorine is bubbled Iron (II) chloride	through a solution of (1mark)	
8.	Dian	nond and graphite are two allotropes of carbon. Explain how graphites a lubricant.	e is suitable for the (1 mark)	
9.		following is a section of a radioactive decay series. Study it and answ follows	ver the questions	
2	220 86	$n \xrightarrow{x} \frac{216}{84} A \xrightarrow{Process I} \frac{212}{83} Bi$		


	•	(1mark)
	ii. Write the nuclear equation for process I	(1mark)
	You are provided with 200 cm ³ of 0.5M lead (II) nitrate solution and 200 cm ³ of sodium chloride solution. Briefly describe how a dry sample of sodium nitrate prepared	of 0.5M crystals can be (3 marks)
11	In an experiment, 120 cm ³ of oxygen diffused through a porous pot in 20 second cm ³ of gas Y diffused through the same porous pot in 60 seconds. If the density 1.4291 g/cm ³ , calculate the density gas Y.	nds and 200 y of oxygen is (2 marks)
•••		
	A given mass of gas was placed in cylinder A as shown below and its volume a measured at constant temperature as V_A and P_A respectively. The same mass we into cylinder B and the piston pushed down as shown. The volume and the preson the piston was also measured as V_B and P_B respectively.	and pressure vas then placed

	a.	and volume of the gas in both cylinders A and B at constant temperature.	•
	b.	Give one application of gas laws.	(1mark)
13.	oxi	nen a certain hydrocarbon is burnt completely in excess oxygen, 3.08 g of calde and 0.72 g of water were formed. If the molecular mass of the hydrocarb	arbon (IV) oon is 184,
		ermine the molecular formula of the hydrocarbon. (C=12, H=1)	(3 marks)
• • •			
14.		25.0cm ³ of 0.1M H ₂ SO ₄ solution neutralised a solution containing 1.06g of a dium carbonate in 250cm ³ of solution, calculate	anhydrous
	a.	The molarity of sodium carbonate (Na=23, O=16, C=12)	(1 ½ marks)
	••••		

b.	Volume of sodium carbonate solution used	(1 ½ marks)
• •		
• •		• • • • • • • • • • • • • • • • • • • •
• •		
84	the solubility of salt W is $80g/100g$ of water at a temperature of 90^{0} C. A salt was cooled to 50^{0} C. Define solubility	
•••		
	Calculate the total mass of crystals present if the solubility of salt W at of water	^
	Calculate the molarity of the solution at $50^{0}\mathrm{C}$	(1 mark)
	(R.F.M of W=174.5)	
 16. G	iven the equation for the reaction below	
	$NH_3(g) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$	
a.	State the Bronsted-Lowry definition of a base	(1 mark)
•••		
• •		
b.	Identify the base in the backward reaction	(1 mark)
• •		
17. M	agnesium and aluminium are both metals. In terms of structure and bond	ing, how does the
m	elting point of their respective chlorides compare?	(3 marks)
• •		
•••		•••••
•••		
• •		•••••
• •		• • • • • • • • • • • • • • • • • • • •

18. The setup below shows laboratory preparation of nitrogen gas.

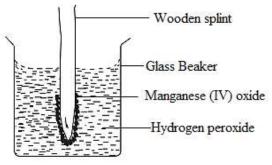

	a.	Write	the equation for the reaction in which nitrogen gas is produced	(1 mark)
	b.	What	property makes nitrogen gas to be collected as shown above	(1 mark)
	•••			
	c.	Nitrog	gen gas is used in storage of semen under artificial insemination. Exp	lain. (1 mark)
19.	Th	e struc	ture below represents two cleansing agents Q and P.	
		Q-	RCOO-Na ⁺	
		P-	ROSO ₃ -Na ⁺	

a. Give one advantage and one disadvantage of using agent Q
 Advantage

.....

Disadvantage

20. The flow chart below shows some of the chemical properties of organic compounds starting with ethanol. Use it to answer the questions that follow.


i.	Name the type of reaction in; a) Step II	(1 mark)
	b) Step IV	
ii.	Write the equation for the reaction in step I	(1 mark)
iii.	Give the structural formula and IUPAC name of compound B Structural formula	(1 mark)
	IUPAC name	(½ mark)
iv.	State the major industrial application of the reaction in step III	
21. The I.	general formula for a homologous series of a group organic compoun Give the name of the structural formula of the fourth member of th	
i.	Name	(1 mark)

below lists data relevant to Enthalpy change $\Delta H_{\text{solution}}(\text{MgCl}_{2(s)})$ $\Delta H_{\text{lattice}}(\text{MgCl}_{2(s)})$ formation provided, calculation of the reaction of th	the formation of MgCl ₂ so Value (kJ/mol) -160 -2526 -1890 ate the molar heat of hydra	olution. ation of chloride ions, (3 marks)
below lists data relevant to Enthalpy change $\Delta H_{\text{solution}}(MgCl_{2(s)})$ $\Delta H_{\text{lattice}}(MgCl_{2(s)})$ $\Delta H_{\text{hydration}}(Mg^{2+}_{(g)})$ formation provided, calculate $CP_{(g)}$	the formation of MgCl ₂ so Value (kJ/mol) -160 -2526 -1890 ate the molar heat of hydra	olution. ation of chloride ions, (3 marks)
below lists data relevant to Enthalpy change $\Delta H_{\text{solution}}(MgCl_{2(s)})$ $\Delta H_{\text{lattice}}(MgCl_{2(s)})$ $\Delta H_{\text{hydration}}(Mg^{2+}_{(g)})$ formation provided, calculate $CP_{(g)}$	the formation of MgCl ₂ so Value (kJ/mol) -160 -2526 -1890 ate the molar heat of hydra	olution. ation of chloride ions, (3 marks)
Enthalpy change $\Delta H_{\text{solution}}(MgCl_{2(s)})$ $\Delta H_{\text{lattice}}(MgCl_{2(s)})$ $\Delta H_{\text{hydration}}(Mg^{2^+}_{(g)})$ formation provided, calculately $Cl_{(g)}$	Value (kJ/mol) -160 -2526 -1890 ate the molar heat of hydra	olution. ation of chloride ions, (3 marks)
Enthalpy change $\Delta H_{\text{solution}}(MgCl_{2(s)})$ $\Delta H_{\text{lattice}}(MgCl_{2(s)})$ $\Delta H_{\text{hydration}}(Mg^{2^+}_{(g)})$ formation provided, calculately $Cl_{(g)}$	Value (kJ/mol) -160 -2526 -1890 ate the molar heat of hydra	ation of chloride ions, (3 marks)
Enthalpy change $\Delta H_{\text{solution}}(MgCl_{2(s)})$ $\Delta H_{\text{lattice}}(MgCl_{2(s)})$ $\Delta H_{\text{hydration}}(Mg^{2^+}_{(g)})$ formation provided, calculately $Cl_{(g)}$	Value (kJ/mol) -160 -2526 -1890 ate the molar heat of hydra	ation of chloride ions, (3 marks)
$\Delta H_{solution}(MgCl_{2(s)})$ $\Delta H_{lattice}(MgCl_{2(s)})$ $\Delta H_{hydration}(Mg^{2+}_{(g)})$ formation provided, calculately $Cl_{(g)}$	-160 -2526 -1890 ate the molar heat of hydra	(3 marks)
$\Delta H_{\mathrm{lattice}}(\mathrm{MgCl_{2(s)}})$ $\Delta H_{\mathrm{hydration}}(\mathrm{Mg^{2+}_{(g)}})$ formation provided, calcula $CP_{(g)}$	-2526 -1890 ate the molar heat of hydra	(3 marks)
$\Delta H_{ m hydration}({ m Mg}^{2+}_{({ m g})})$ formation provided, calcula ${ m Cl}^*_{({ m g})}$	-1890 ate the molar heat of hydra	(3 marks)
formation provided, calcula	ate the molar heat of hydra	(3 marks)
CF _(g))		(3 marks)
ange of hydration of Mg ²⁺	g) as shown in the table about	•
•	•	•
	ange of hydration of Mg ²⁺ (gange of hydration of Ca ²⁺ (gange of hydration of Ca ²⁺)	at enthalpy of hydration of $Ca^{2+}_{(g)}$ is -1562 kJ/mol , sange of hydration of $Mg^{2+}_{(g)}$ as shown in the table abounge of hydration of $Ca^{2+}_{(g)}$

i.	Define the term <i>cracking</i> .	(1 mark)
ii.	Write the equation for the cracking of dodecane, $C_{12}H_{26}$ to form eth other hydrocarbon	(1 mark)
iii		
nitra laboi	owder is suspected to be containing sulphite ions. Given, 2M nitric acid, of the solution, Acidified potassium manganate (VII) reagents and other necessatory apparatus, describe how one can confirm the presence of the ions.	(3 marks)
 5. Etha	noic acid reacts with ethanol to form a product that has a pleasant smell owater. When the reaction is at an equilibrium, a few drops of concentrate	called an ester
	added, followed by warming.	1
a.	What is the effect of adding concentrated sulphuric acid on; i. The position of the equilibrium of the mixture?	(1 mark)
	ii. The yield of the ester	(1 mark)
b.	The forward reaction in the equilibrium is referred to as esterification name of the reverse reaction?	


c.	Explain the effect of rise in temperature on the yield of pa	roducts of a reaction with a
	molar enthalpy change of -92kJ/mol.	(2 marks)

26. A wet wooden splint was dipped in manganese (IV) oxide powder and then soaked in hydrogen peroxide solution as shown below.

i.	State and explain the observation that was made	(2 marks)
ii.	Write the equation for the reaction that occurred	(1 mark)

27. The setup below shows the process of electrolysis of molten lead (II) fluoride. Use it to answer the questions that follow.

a.	Identify the electrodes labelled A and B A	(1 mark)
b. c.	B	(1 mark) (2 marks)
d.	Give any one application of electrolysis	(1 mark)
	ne graphs J, K and L below shows the general trend in the properties of period to Cl). Use them to answer the questions that follow.	
	Na Cl Na Cl Na	Cl
Se a.	lect a graph that represents the variation in; Ionic radius.	(½ mark)
b.	Atomic radius. Explain.	(1½ marks)
	uminium objects do not need protection from corrosion while Iron objects otected from corrosion. Explain.	must be (2 marks)