URANGA PHYSICS EXAMINATION

Kenya Certificate of Secondary Education

232/1

PHYSICS Paper 1

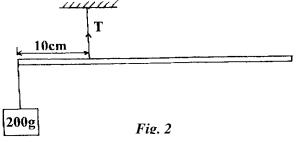
(Theory)

4TH EDITION (JAN. 2022) – TIME 2 Hours

Na	me:	School:
Cl	ass .	
Ca	ndi	date's Signature Date:
Ins	stru	ctions to candidates
	i.	Write your name, index number, class and school in the spaces provided above.
	ii.	Sign and Write the date of Examination in the spaces provided above.
	iii.	This paper consists of two sections; A and B . Answer all the questions in section A and B in the spaces provided.
	iv.	All working must be clearly shown.
	ν.	Silent non-programmable electronic calculators may be used.
	vi.	Candidates should answer the questions in English .

FOR EXAMINERS USE ONLY

SECTION	QUESTIONS	MAXIMUM SCORE	CANDIDATE'S SCORE
A	1-11	25	
В	12	16	
	13	08	
	14	09	
	15	12	
	16	10	
TOTAL SO	CORE	80	


This paper consists of 14 printed pages. Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

SECTION A (25 MARKS)

Answer all the questions in this section

added into the instrument. What is the final volume of water in it?	(2 marks
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
) Name two forces that determine the shape of liquid drop on a solid surfac	e. (2 marks
	anows the rain wa
b) If an umbrella is touched with finger on inner surface when it is raining, it	
to leak through. Give a reason.	
to leak through. Give a reason.	
to leak through. Give a reason.	
to leak through. Give a reason.	
to leak through. Give a reason. The barometric height in a town is 55cmHg. Given that the standard atm	nospheric pressure
to leak through. Give a reason. The barometric height in a town is 55cmHg. Given that the standard atm 76cmHg and the density of mercury is 13.6g/cm³, determine the altitude of the standard atm 15cmHg and the density of mercury is 13.6g/cm³.	nospheric pressure of the town. (Dens
to leak through. Give a reason. The barometric height in a town is 55cmHg. Given that the standard atm	nospheric pressure of the town. (Dens
to leak through. Give a reason. The barometric height in a town is 55cmHg. Given that the standard atm 76cmHg and the density of mercury is 13.6g/cm³, determine the altitude of the standard atm 15cmHg and the density of mercury is 13.6g/cm³.	nospheric pressure of the town. (Dens
to leak through. Give a reason. The barometric height in a town is 55cmHg. Given that the standard atm 76cmHg and the density of mercury is 13.6g/cm³, determine the altitude of the standard atm 15cmHg and the density of mercury is 13.6g/cm³.	nospheric pressure of the town. (Dens
to leak through. Give a reason. The barometric height in a town is 55cmHg. Given that the standard atm 76cmHg and the density of mercury is 13.6g/cm³, determine the altitude of the standard atm 15cmHg and the density of mercury is 13.6g/cm³.	nospheric pressure of the town. (Dens
to leak through. Give a reason. The barometric height in a town is 55cmHg. Given that the standard atm 76cmHg and the density of mercury is 13.6g/cm³, determine the altitude of the standard atm 15cmHg and the density of mercury is 13.6g/cm³.	nospheric pressure of the town. (Dens
to leak through. Give a reason. The barometric height in a town is 55cmHg. Given that the standard atm 76cmHg and the density of mercury is 13.6g/cm³, determine the altitude of the standard atm 15cmHg and the density of mercury is 13.6g/cm³.	nospheric pressure of the town. (Dens
to leak through. Give a reason. The barometric height in a town is 55cmHg. Given that the standard atm 76cmHg and the density of mercury is 13.6g/cm³, determine the altitude of air is 1.25kg/m³)	nospheric pressure of the town. (Dens
to leak through. Give a reason. The barometric height in a town is 55cmHg. Given that the standard atm 76cmHg and the density of mercury is 13.6g/cm³, determine the altitude of air is 1.25kg/m³)	nospheric pressure of the town. (Dens (2 marks
to leak through. Give a reason. The barometric height in a town is 55cmHg. Given that the standard atm 76cmHg and the density of mercury is 13.6g/cm³, determine the altitude of air is 1.25kg/m³)	nospheric pressure

ii. A measuring cylinder contains 20cm ³ of water. 10cm ³ of salt is added and sti	irred. Explain
why the new volume is not 30cm ³ .	(1 mark)
5. Figure 1 shows samples of same liquid in beakers B and C being heated through	
copper rod of non-uniform thickness. A thermometer is placed on each sample fo	
Thermometer Lagged Copper rod Head liquid. Head Fig. 1 If the rod is heated at the middle, state and explain which of thermometers records a higher	r temperature.
	(2 marks)
6. Figure 2 shows a uniform meter rule balancing when a mass of 200g is hung at o	one end.

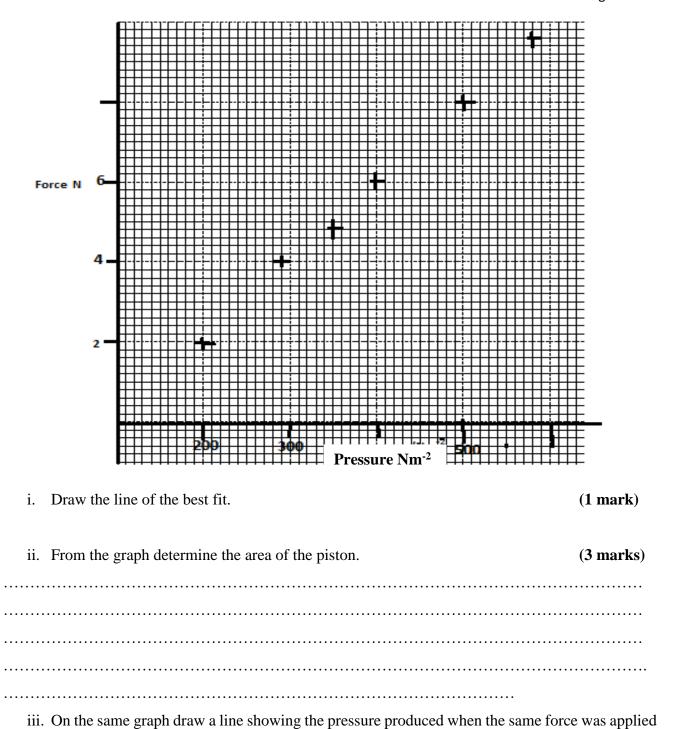
Determine the tension T in the string.

(2 marks)

7. State the Hooke's Law. (1 mark)
8. Figure 3 shows a Bunsen burner.
Air Gas tap Gas Fig. 3
Explain how air is drawn into the burner when the gas tap is open. (2 marks)
9. A can containing only air is tightly screwed and left in strong sunlight. Using kinetic theory o
gases explain how the pressure inside the can will be affected. (3 marks)

10. A form four girl did an experiment using a simple pendulum of length **120 cm** to determine the acceleration due to gravity. She timed for **50** oscillations (*using a stop watch*) and got the result indicated in **figure 4** below.

Fig. 4


(a) Record the indicated tir	ne in SI units.	(1 mark)
(b) From the information al	bove, determine the value of acceleration of	
formula $T^2 = \frac{4\pi^2 l}{g}$ where T	is periodic time. (Take $\pi = 3.142$)	(3 marks)
11. A machine consists of a wh	neel of radius 40cm and axle of radius 10cm	m. Determine the
efficiency of the machine v	when used to lift a load of 300N using an e	ffort of 100N. (2 marks)

SECTION B (55 MARKS)

Answer all the questions in this section

2. (a) St	ate the Archimedes' principle.	(1 mar
	cork of volume 100cm ³ is floating on water. If the density of the cork is	
(i)	Calculate the mass of the cork.	(2 mar
		••••
(ii)	•	(2 mar
(iii)	What minimum force is required to immerse the cork completely?	(2 mar
` ,		•
(c) Tl	ne graph below shows the variation of pressure produced at the end of pi	ston as the
is	applied on it.	

(1 mark)

(d) In construction of a mercury barometer care is taken to make sure it has no gas in the space above mercury.

on a wider piston.

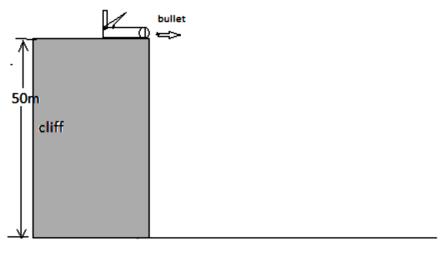
	How would you test whether there is a gas above mercury?	
ii)	State the problem caused by the presence of gas in the barometer.	(1 mark)
((l) Find the total pressure experienced by a diver 8 meters below the se Atmospheric pressure = 103 360N, Density of sea water = 1030 kg/m ³)	a surface. (Take (2 marks)
1. (£) What is meant by acceleration?	(1 mark)
•••••	Figure 5 shows a displacement-time graph for a rally vehicle.	
	displacement (m) Time (s) Fig. 5	
	(i) Describe the way the vehicle is moving.	(1 mark)

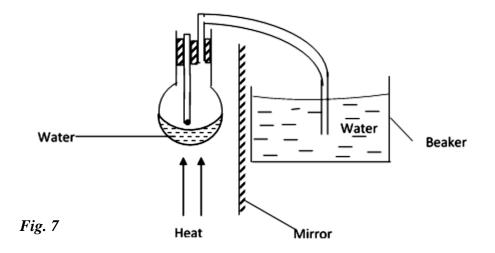
(1 mark)

(1 mark)

	6	ii)	Sketch a velocit	ty time graph fo	r thic vahicla	
Sketch a velocity-time graph for this vehicle	()	11)	Sketch a veloch	tv-time grabn to	r unis venicie	

(c) A bullet is fired horizontally at a velocity of 400m/s from a cliff which is 50m tall as in **figure 6** below.



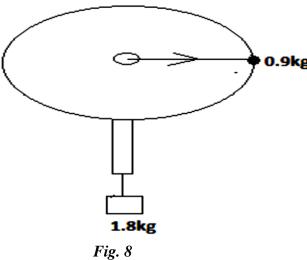

Fig. 6

I.On the diagram draw the trajectory of the bullet until it comes to rest.

II.Find the time taken for the bullet to hit the ground.	(2 marks)
III.Find the horizontal range.	(2 marks)
	• • • • • • • • • • • • • • • • • • • •

	(a) Define the following terms.		(2 marks)
i)	Latent heat of vaporization		
ii)	Specific latent heat of vapo	rization.	

(b) A beaker of mass 100g and negligible heat capacity contains 25g of water at 18°C. A student heats water to produce steam at 100°C. The steam is then passed into the water for some time as shown in **figure 7 below.** After the experiment, the mass of the beaker and its contents is found to be 128g.



Given that the specific latent heat of vaporization of water is $2.26 \times 10^6 \, \mathrm{Jkg^{-1}}$ and specific heat capacity of water is $4200 \, \mathrm{Jkg^{-1}K^{-1}}$.

I.	Give the reason why the thermometer is placed slightly above the water surface.	(1 mark)

II.		purpose of the mirror in the experiment.	(1 mark)	
III.	Find the	mass of steam that converted to water.	(2 marks)	
•••••				
IV.	Determin	ne the final temperature of the water in the beaker correct to 1 decimal pla	ce. (3 marks)	
1				
	(a) A sm	all ball of mass 30g is spinning on a string of length 80cm in a horizonta	zontal circle.	
	(i)	Which force produces the centripetal force?	(1 mark)	
	(ii)	Explain why the speed of the ball is constant but the velocity is not.	(1mark)	
			••	

(b) Two masses of 0.9kg and 1.8kg are attached on an inelastic string as shown in figure 8.

	The radius of the circle through which the 0.9kg mass spins is 0.5m. Find the:		
(i)	Tensional force that will keep the system in circular motion.	(2 marks)	
(ii)	Angular velocity at which the 0.9kg mass must spin in order that the 1.8kg		
()	slide downwards.	(3 marks)	
) An object k is at the edge of a turntable as in figure 9 .		
(c			
	K		
	Fig. 9		
	spins anticlockwise. What factors will affect the force acting on the object?	(2 marks)	
	An electron of mass 9.1x10 ⁻³¹ kg is spinning around an atom of radius 6.2x10)- ¹¹ m at a speed	
(;)	of 3.0x10 ⁸ m/s.	(2 a wlsa)	
(i)	Determine the centripetal force acting on the electron.	(2 marks)	
• • • • • • • • • •		•••••	

(ii) If the electrostatic force on the electron was suddenly removed, how will the	ne electron move?
16.(a) A lawn tennis ball is thrown such that it hits a wall perpendicularly at a specifigure 10 and rebounds at 4.5m/s.	ed of 6.5m/s as in
lawn tennis ball. wall	
The ball has a mass of 50g and it is in contact with the wall for 0.02s. (i) What is meant by impulse?	(1 mark)
(ii) Find how much force is applied to the wall by the ball.	(3 marks)
(iii) Determine the change in momentum of the ball.	(2 marks)

(1V)	Giving your reason state the type of collision that the ball undergoes.	(2 marks)
	asing your argument on Newton's second law, explain why the athletes for	
a	thick soft mattress and not on a hard ground.	(2 marks)
•••••		

THIS IS THE LAST PRINTED PAGE