URANGA PHYSICS EXAMINATION

Kenya Certificate of Secondary Education

232/2 PHYSICS Paper 2

(Theory) FORM 3

KNOWLEDGECONDENSED

4TH EDITION (FEBRUARY 2022) – TIME: 2 Hours

MARKING SCHEME.

1	 a) A - for Ammeter √1 V - for Voltemeter √1 b) Device S is used for controlling current √1 	3
2	 Use the concave mirror to focus a clear image of a distant object on the white screen. √1 Use the metre rule to measure the distance between the mirror and the screen. √1 Repeat the focusing and measure other two values of distance between mirror and screen. √1 Find average of the distances above, this is the focal length of the concave mirror. √1 	4
3	Convex mirrors provide a wider field of view than plane mirrors. √1	1
4	$\frac{12m}{4s} = 3m/s \sqrt{1}$	1
	$T = \frac{1}{f} = \frac{1}{2} = 0.5s \ \sqrt{1}$	
	$wavelength = \frac{velocity}{\text{frequency}} = \frac{3}{0.5} \sqrt{1} = 6m \sqrt{1}$	2
5	First path is total internal reflection Reflected ray is passes through second phase unrefracted/ straight. $\sqrt{1}\sqrt{1}$	2

6	v hi	3			
0	$\frac{v}{u} = \frac{hi}{ho} \sqrt{1}$	3			
	$\frac{10}{600} = \frac{16}{\text{ho}}\sqrt{1}$				
	$\frac{1}{600} = \frac{1}{100} $ V1				
	h = 0.00m /s				
_	$ho = 9.60m\sqrt{1}$				
7	Leaf falls because the rod repels negative charges towards the leaf				
	which neutralize√1 the positive charges on it and falls, the leaf rises				
	because of further repulsion of negative charges to the leaf which				
	makes it more negative. √1				
8	a. X- carbon rod√1				
	Y- Zinc casing√1				
	b. To reduce polarisation√1				
9	Higher concentration of charge at the tip of then wire ionizes air√1,	2			
	positive air ions are repelled away from the wire which blow the				
	flame as electric wind. √1				
10	Wavelength reduces√1	1			
	<u> </u>	25mks			
11	aArea of overlap between the plates. √1	13			
	-Distance of separation between the plates. $\sqrt{1}$				
	-Nature of dielectric material used.				
	b Initially the milliameter reads a maximum value of				
	current which reduces to zero√1				
	- Voltmeter reading rises from zero to a maximum. √1				
	1 1 1 1.14				
	$\frac{1}{4\mu F} + \frac{1}{1\mu F + 3\mu F} = \frac{1}{C}\sqrt{1}$				
	$\frac{1}{C} = \frac{1}{2\mu F} \sqrt{1}$				
	$C = 2\mu r$				
	$\underline{C} = 2\mu F \sqrt{1}$				
	<u> </u>				
	$Q = CV\sqrt{1}$				
	$Q = 2\mu F \times 12V\sqrt{1}$				
	$Q = 24\mu C \sqrt{1}$				
	 				
i					

		Т
	$V = \frac{Q}{C} = \frac{24\mu C}{4\mu F} \sqrt{1}$ $V = 6.0V$ $V = 12V - 6V\sqrt{1}$ $V = 6.0V\sqrt{1}$	
12	 a. Ohms law states that the current through a conductor is directly proportional to the potential difference across it, provided the temperature and other physical conditions are kept constant. √1 b. i. work done per unit charge across the battery due to internal resistance of the battery √1√1 ii. E = 12V√1 iii. E = 12V√1 iv. E = IR + Ir 12 = 10 + 0.8r√1 c. i. E = 9.2V, √1 the voltage when current is zero. iii. slope, S = (9.2-0)/(0-5.5) √1 = -1.6727Ω√1, slope S represents the Internal resistance of the battery. √1 	12
13	a. – the incident ray, the normal and the reflected ray at a point of incidence, all lie on the same plane. $\sqrt{1}$ b. Correct reflected ray with arrow, and normal shown, $\sqrt{1}$ $r=42\sqrt{1}$	12

c.
$$n = \frac{360}{\theta} - 1$$

$$19 + 1 = \frac{360}{\theta} \sqrt{1}$$

$$\theta = 18\sqrt{1}$$
d. $n1 \sin i = n2 \sin \theta 2 \sqrt{1}$

$$\frac{3}{2} \sin i = \frac{4}{3} \sin 20 \sqrt{1}$$

$$i = 17.698 \sqrt{1}$$
e.
I. Correct repeated reflections, $\sqrt{1}$
II. Total internal reflection $\sqrt{1}$
f. Correct rays $\sqrt{1}$, location. $\sqrt{1}$
a. Like poles repel, while unlike poles attract each other. $\sqrt{1}$
b. A magnet can attract any magnetic material not necessarily a magnet, but to identify a magnet, repulsion of like poles is a sure way. $\sqrt{1}$
c. The soft iron is magnetized by induction $\sqrt{1}$ and attracts back the pin, while the wooden block does not magnetise so the pin is attracted with ease. $\sqrt{1}$

	d.	N- points to the left. $\sqrt{1}$	
	۵	Making compasses√1	
	C.	Bicycle dynamos	
		Generators	
		Electric motors	
	f.	Electric motors	
	1.	- Increasing current √1	
		 Increasing the number of turns of the solenoid√1 	
		 Decreasing the length of the solenoid. 	
	σ	Soft iron is easily magnetized and demagnetized. √1	
15	a.	In longitudinal waves the particles vibrate parallel to the direction of the wave, while in transverse waves, the particles vibrate perpendicularly to the direction of the wave. $\sqrt{1}$	09
	b.	Using absorbent materials on the walls. √1	
		I. Y-Y or X-X or equivalent. √1	
		III. $frequency = \frac{Velocity}{wavelength} = \frac{330}{0.4} \sqrt{1}$	
		$=825Hz \sqrt{1}$	
	d.		
	G.	I. One colour or wavelength light source. √1	
		II. To provide coherent waves/ same frequency. √1	
		III. A series of alternate bright and dark bands are	
		formed on the screen. √1	
		IV. The spaces between the fringes also reduces. $\sqrt{1}$	
			55
	Total		80.