URANGA PHYSICS EXAMINATION

Kenya Certificate of Secondary Education

232 FORM 1 PHYSICS

(Theory)

4TH EDITION (DEC. 2021, TERM 2) – TIME 2 Hours

MARKING SCHEME

SECTION A (25 MARKS)

(Answer all the questions in this section)

1. State what thermodynamics as a branch of Physics deals with. (1 mark)

- It deals with the transformation of heat to and from other forms of energy \(\sqrt{1} \) and the accompanying changes in pressure, volume etc. 1mk
- 2. Explain the **first aid measure** for electric shock as a form of injury in a Physics laboratory.

(1 mark)

*Put off the main switch first before treating the shock ✓*1

1mk

3. A form one girl at Agoro Oyombe Secondary School did an experiment using a stop watch to measure the duration for 20 swings of a simple pendulum and got the result indicated in figure 1 below.

Fig. 1

Record the indicated time in SI units.

(1 mark)

$$= 18s + 0.74 s = 18.74s \checkmark 1$$

1mk

4.

- a) Name **two** main factors that should be put into consideration when choosing a measuring instrument for a given task. (2 marks)
- Degree of accuracy required. ✓1

Type/shape of length e.g. circular or straight ✓ 1 Size of length ✓1 any two 2mks b) A student measured the length of a wire **four** times using a meter rule and obtained the following readings: 18.6cm; 18.5cm; 18.6cm; and 18.5cm. Determine the average length the student should record. (2 marks) Average length = $\frac{18.6+18.5+18.6+18.5}{4}$ \(\sqrt{1}\) = $18.55 \text{ cm} \checkmark 1 \text{ (must show the work)}$ 2mks 5.Convert **204000** cm³ into **SI** units. (1 mark) 1mk 6. Name any **two** effects of force. (2 marks) - Force can make stationary object move. ✓1 It can increase speed of moving object. $\checkmark 1$ - It can stop a moving object. ✓1 It can decrease/slow down the speed of moving object. $\checkmark 1$ It can change shape of an object (i.e. can deform/distort an object). $\checkmark 1$ It can make an object turn about a fixed point (pivot)/ turning effect of force. ✓1 It can change the direction of a moving object. $\checkmark 1$ any two 2mks 7. Name the type of force that: (2 marks) Opposes motion between two surfaces in contact. - Friction force ✓ 1/2 Makes an object appear lighter when being lifted out of water. (ii) - Up thrust force ✓ 1/2 Attracts pieces of papers to a plastic ruler when the ruler is rubbed on hair. (iii) - Electrostatic force ✓¹/₂ Enables a body to move in a circular motion. - Centripetal force ✓¹/₂ Total 2mks 8. a) State **two** factors that affect the surface tension force on a water surface. (2 marks)

<u>2mks</u>

Presence of impurities ✓1 e.g. soap detergents, kerosene etc

Temperature ✓1

b) Figure 2 shows a toy boat. A piece of soap is attached to end **A** and then the toy placed on a surface of clean water.

Immediately, it is observed that the toy boat moves towards point B. Explain this observation.

(2 marks)

- soap breaks /lowers/weakens ✓ surface tension ✓ lat A.
- higher/greater surface tension at point B pulls toy boat. √1 2mks
- 9. **Figure 3** shows the meniscus of water as it rises in a glass tube.

Explain why meniscus of water is shaped as shown above.

(2 marks)

There is <u>stronger</u> adhesive force between <u>water and glass molecules</u> ✓ 1 and <u>weaker</u> cohesive forces

between water molecules. ✓1 (award zero if no mention of molecules or particles) 2mks

10.

a) Define pressure and state its SI units

(2 marks)

- force acting perpendicularly/normally per unit area $\checkmark 1$
- SI unit is the newton per square meter (N/m^2) or the pascal (Pa). $\checkmark 1$ 2mks
- b) A man of weight 840N stands upright on a floor. If the area of contact of his shoes and floor is 420cm², determine the average pressure he exerts on the floor. (3 marks)

$$P = \frac{F}{A} \checkmark 1 formula$$

 $= \frac{840N}{(420\times10^{-4})m^2} \checkmark 1 \ correct \ substitution \ (award \ double \ marks \ if \ no \ formula \ stated)$

= 20, 000 N/m²(or 20, 000 Pa) \checkmark 1 evaluation with correct units

3mks

- 11. Explain the following:
- a. why a trailer carrying heavy loads have many wheels?

(1 mark)

- Many wheels increase the area of contact with the ground thereby reducing pressure ✓ 1 exerted on the road. This prevents damage of the roads by tracks.

 1mk
- **b.** why water dams are built with thicker walls at the bottom than at the top? (1 mark)
- Thicker walls at the bottom of the dam withstand higher pressure due to increased water

 column at the bottom √ 1 than at the top.

 1mk

SECTION B (55 MARKS)

12.

a)

- (i) What is the meaning of a derived physical quantity? (1 mark)
- a quantity obtained by multiplication or division of other physical quantities ✓ 1
 - (ii) State two examples of fundamental physical quantities. (2 marks)
- Length, mass, time, temperature (thermodynamic temperature), electric current, amount of substance, and luminous intensity√1√1

 any two 2mks
- **b)** You are provided with the following: eureka can, measuring cylinder, water, a string and a stone. Briefly describe how you would determine the volume of an irregular piece of stone.

(4 marks)

- Fill Eureka can with water until it overflows. ✓1
- Once the water ceases/stops coming out of the spout, place a measuring cylinder under the spout. ✓1
- Tie the stone with a thread and lower it gently into water until it is fully submerged \checkmark 1
- The volume of water collected in the measuring cylinder is the volume of the stone \checkmark 1
- c) Give a reason why displacement method is unsuitable for determining the volume of solids such as charcoal.
- it floats in liquid ✓1
- it absorbs liquid √1 any one 1mk
- d) **Figure 4** shows a section of a measuring instrument.

Fig. 4

(i) Name the measuring instrument shown above.

(1 mark)

Burette ✓1

(ii) What is the volume of water in it?

(1 mark)

 40.0 cm^3 ✓ 1

(iii) Some 24 drops of water each of volume 0.5cm³ are added into the instrument above. Find the final reading of the instrument. (2 marks)

Volume of 24 drops of water = $24 \times 0.5 = 12.0$ *cm*³ $\checkmark 1$

Final reading = $40.0 - 12.0 = 28.0 \text{ cm}^3 \checkmark 1$

2mks

13.

- a) In finding the density of a liquid, why is the method of using a density bottle more accurate than the one of using a measuring cylinder?(1 mark)
- It measures the exact volume of liquid ✓ 1

1mk

b) In an experiment to determine the density of **liquid** L using a density bottle, the following measurements were recorded:

Mass of empty density bottle = 25.5 g

Volume of the density bottle = 40.0 cm^3

Mass of density bottle full of **liquid** L = 55.5g

Use the above data to determine the:

(i) Mass of liquid L.

(1 mark)

 $55.5 - 25.5 = 30.0g \checkmark 1 (must show the work)$

1mk

(ii) Volume of the liquid L.

(1 mark)

40.0 cm³ ✓1

<u>1mk</u>

(iii) Density of liquid L.

(2 marks)

$$\rho = \frac{\textit{mass of liquid L}}{\textit{volume of liquid L}}$$

$$= \frac{30.0g}{40.0cm^3} \checkmark 1 correct substitution$$

=
$$0.75g/cm^3$$
 (or $750kg/m^3$) $\checkmark 1$ evaluation with correct units

<u>2mks</u>

c) An alloy is made by mixing 80cm³ of copper of density 9g/cm³ with 120cm³ of alluminium of density 3g/cm³. Determine the

(2 marks)

Mass of copper =
$$9g/cm^3 \times 80cm^3 = 720g$$

Mass of aluminium = $3g/cm^3 \times 120cm^3 = 360g$ for the two masses

$$total\ mass = 720 + 360 = 1080g \checkmark 1$$

2mks

II. Density of the alloy in **SI** units.

(2 marks)

Density of the alloy =
$$\frac{total\ mass\ of\ alloy}{total\ volume\ of\ alloy}$$

$$=\frac{1080g}{(80+120)cm^3}\checkmark I=\frac{1080g}{200cm^3}\ correct\ substitution$$

$$= 5.4g/cm^3$$

= $5400kg/m^3 \checkmark 1$ evaluation in SI units (award correct evaluation if SI unit not indicated) 2mks

14.

a)

- i. Name **two** types of forces which can act between objects without contact. (2 marks)
- Magnetic force ✓1
- Electrostatic force ✓1
- Force of gravity ✓1

any two 2mks

ii. **Figure 5** shows a wire loop with two threads tied across it. The loop is dipped into a soap solution such that the soap film covers it as shown.

Fig. 5

6 | P a g e

The Uranga F1 Physics Examination 4th Edition December ©2021

Region **B** is punctured such that the soap film in that section is broken. On the space alongside the diagram sketch the resulting shape of the wire loop. (1 mark)

✓1 correct shape of threads

1mk

b)

i. Give three differences between mass and weight.

(3 marks)

Mass	Weight
The quantity of matter in an object body	Gravitational pull on an object √1
The SI unit kg (kilogram)	SI unit is the newton √1
Constant everywhere	Varies from place to place ✓1
A scalar quantity	A vector quantity ✓1
Measured using a beam balance	Measured using a spring balance ✓1

any three 3mks

- ii. A student was heard saying "the mass of a ball on the moon is one sixth its mass on earth". Give a reason why this statement is wrong. (2 marks)
 - Mass <u>does not change</u> ✓ 1 since the <u>quantity of matter in a body/ball remains the same</u> everywhere ✓ 1
- iii. A man has a mass of 60kg. Calculate his weight on earth, where the gravitational field strength is 10N/kg. (3 marks)

 $W = mg \checkmark 1$ formula

- $=60kg \times 10N/kg \checkmark 1$ substitution (award double marks if no formula stated)
- = $600N\sqrt{1}$ evaluation with correct units

3mks

c) Give **two** examples of vector quantities.

(2 marks)

- Weight/Force ✓1

- *Momentum* ✓1

- *Velocity* ✓1

- Acceleration ✓1

- Displacement ✓1

any two 2mks

15.

a) Define atmospheric pressure.

(2 marks)

This is the pressure exerted on the earth's surface by the weight of the column of air around it. $\checkmark \checkmark 2$

b) A block of wood plank in the form of a rectangular block measures 10cm by	40cm by 90cm.
The solid has a mass of 1800 grams. Calculate:	
(i) the density of the solid in kg/m^3 .	(3 marks)
$ \rho = \frac{m}{V} \checkmark 1 \text{ formula} $	
$\frac{1.8kg}{(0.1\times0.4\times0.9)m^3} \checkmark 1 \ correct \ substitution \ (award \ double \ marks \ if \ no \ formula \ stated)$	
$=50kg/m^3 \checkmark 1$ evaluation	3mks
(ii) the weight of the plank. (take $g = 10N/kg$)	(2 marks)
W = mg	
$= 1.8kg \times 10N/kg \checkmark 1$ substitution	
= $18N\sqrt{1}$ evaluation with correct units	<u>2mks</u>
(iii) the minimum pressure it can exert.	(3 marks)
$Minimum \ pressure = \frac{Weight, W}{Maximum \ area} \checkmark 1 \ formula$	
$= \frac{18N}{(0.4 \times 0.9)m^2} 1 correct substitution (award double marks if no formula stated)$	
$= \frac{18N}{0.36m^2} = 50 N/m^2 1 evaluation with units$	<u>3mks</u>
16.	
a)	
i. Name two factors that affect pressure in fluids.	(2 marks)
- Height/depth of fluid column √1	,
- Density of fluid ✓1	
	ny two 2mks
ii. The reading of mercury barometer is at 70.0cm . What is the pressure at the	he place in N/m ² ?
{take the density of mercury as 13600 kg/m³}	(3 marks)
$P = h\rho g \checkmark 1$ formula	
= $0.70 \times 13600 \times 10 \checkmark 1$ correct substitution (award double marks if no form	ula stated)
= 95 200 N/ m^2 1 evaluation	<u>3mks</u>
b)	
(i) State the Pascal's principle.	(1 mark)
pressure applied at one part in a fluid is transmitted equally to all other parts of the e	enclosed liquid √ 1
	1ml

(ii) In a hydraulic press, the surface areas of the pistons are 0.0006 m² and 0.0002 m² respectively. If a force of 30N is applied downwards on the smaller piston, with what force does the larger piston move upwards? (3 marks)

$$\frac{F_s}{A_s} = \frac{F_L}{A_L} \checkmark 1$$
 formula

$$\frac{30\,N}{0.0002\,m^2} = \frac{F_L}{0.0006\,m^2} \checkmark 1 \ correct \ substitution \ (award \ double \ marks \ if \ no \ formula \ stated)$$

$$F_L = \frac{30 N \times 0.0006 m^2}{0.0002 m^2} = 90 N \sqrt{1}$$
 evaluation with units

3mks

State two properties of the liquid used as hydraulic brake fluid.

(2 marks)

- (a) It should not corrode parts of the brake system ✓1
- (b) It should be highly incompressible ✓1
- (c) It should have a low freezing point and high boiling point. ✓1

any two 2mks

THIS IS THE LAST PRINTED PAGE