URANGA PHYSICS EXAMINATION

Kenya Certificate of Secondary Education

232/3

PHYSICS

Paper 3

(Practical)

 4^{TH} EDITION (NOV. 2021) – TIME 2 $\frac{1}{2}$ Hours

MARKING SCHEME

Question 1

Part A

- (a) Balance point = $49.5cm \checkmark 1mk$ (allowance of 0.5cm on the higher side and must be to 1d.p.)
- (c) $\mathbf{X} = 18.0cm \pm 1.0 \ cm \checkmark 1mk$ $\mathbf{D} = 40.5cm \pm 1.0cm \checkmark 1mk \ (must be to 1 \ d.p.)$
- (d) $w_1 \times 40.5cm = 1N \times 18.0cm \checkmark$ correct substitution of students values above $= 0.4444N \checkmark 2mks$ (student's evaluation at least to 4 s.f. or exact) $U_w = 0.5 0.4395 = 0.0556N \checkmark 1mk$ (student's evaluation)

(f)

- (i) $X = 18.5cm \pm 1.0 \checkmark 1mk$ (must be to 1 d.p.)
- (ii) $w_1 \times 40.5 = 1 \times 18.5 = 0.4568N\sqrt{1mk}$ (student evaluation at least to 4 s.f. or exact)

$$\mathbf{U_L} = 0.5 - 0.4543 = 0.0432 \text{N} \text{ / } 1mk \text{ (student's evaluation)}$$

- (g) R.D.= $\frac{U_L}{U_W} = \frac{0.4568N}{0.0556N} = 0.7770 \checkmark 1 \text{mk}$ (student's evaluation at least to 4 s.f or exact)
- (h) Density of L = R.D. x density of water $\sqrt{2mk}$ = 0.7770 x 1000 $\sqrt{2mk}$
- (i) = $777.0 kg/m^3 \checkmark 1 mk$ (student's evaluation to at least 4s.f. must write unit)

Part B

(j)

I. Mass of the metal solid **R**, $M_s = 20.0 \text{ g} \pm 2.0 \text{ s}$ /2mk 1dp

The Uranga Physics Examination Series 4th Edition August ©2021-22.

- II. Mass of the wrapped empty plastic beaker $M_1 = (30.0 45.0 \text{ g}) \sqrt{2mk} 1 dp$
- III. Mass of the wrapped plastic beaker+ mass of 240.cm³ of water, $M_2 = 250.0-290.0$ $\sqrt{2mk}$ 1dp.
- IV. Initial temperature of water, $T_1 = 29 \pm 5$ Degrees Celcius \checkmark 1mk (accuracy to $1^{\circ}C$)

$$T_1 = 29 + 273 = 302 \pm 5 \text{ Kelvin } \sqrt{2mk}.$$
 $1\sqrt{2mks}$

- (k) Boiling point of water, T = 95 + 273 = 368 (between 85 99 degrees celcius) Kelvin $\sqrt{1}mk$
- (1) Temperature of the mixture, $T_2 = 32 + 273 = 305 \text{ Kelvin} \pm 5 \checkmark 1 \text{ mk}$
- (m) Heat lost by metal solid $\mathbf{R} = (\text{heat gained by water} + \text{heat gained by plastic beaker})$

Heat lost by metal \mathbf{R} = Heat gained by water + Heat gained by plastic beaker

$$\frac{20.0}{1000} \times c_s \times (368 - 308) \checkmark 1mk = \left\{ \frac{(275.5 - 33.2)}{1000} \times 4200 \times (305 - 302) \right\} + \left\{ \frac{(33.2)}{1000} \times 359 \times (305 - 300) \right\} \checkmark 1mk$$

c_s 1mk (student's evaluation at least to 4s.f. or exact)

Question 2

Part A

(a) (i) V

√½mk (circuit diagram of voltmeter across the cell)

(c) Table 2

Length L(m)	0.2	0.3	0.4	0.5	0.6	0.7	
Current , I(A)	0.42	0.36	0.30	0.26	0.22	0.20	±0.02 A ½mks each up to a max. of 4 points, must be to 2d.p.
Voltage,	1.9	2.1	2.2	2.3	2.4	2.6	±0.1 V
V (V)							½mks each up to a max.
							of 4 points, must be to

		1		
				11
				1a.p.
				*

(4 marks)

(e)

 $A_1 \checkmark 1mk$ - Labelling axes with units, if axes inverted award zero

 $S_1 \checkmark 1mk$ - Simple, uniform and accommodate all values in the table

 $P_2\sqrt{2}$ mks-Plotting: 5-6 pts $\sqrt{2}$ mks, 4pts $\sqrt{1}$ 1/2**mks, 3pts\sqrt{1}mk, 1-2 pts** award zero

 $L_1 \checkmark 1mk$ - a straight line graph with negative gradient passing through at least 4 correctly plotted points.

(f) slope =
$$\frac{\Delta V}{\Delta I} = \frac{\text{student's correct V points from gragh } \sqrt{2mk}}{\text{student's correct I points from gragh} \sqrt{2mk}}$$

Student's evaluation at least to 4 s.f. with correct units $(\Omega \text{ or } V/A) \checkmark 1mk$, award $\checkmark 1/2mk$ without units and zero for wrong units (slope must have negative sign)

(g)
$$E_2 = V + Ir \sqrt{2mk}$$

(h)

- i. $E_2 = V$ -intercept(Y-intercept) \checkmark 1mk (extracted and read correctly from student's graph)
- ii. -r = -sloper = slope, student's value $\sqrt{2mk}$

Part B

- (j) $V_I = 14.5 \pm 1.0 \text{cm} / 1 \text{mk}$ (must be to 1 d.p.)
- (k) $V_2 = 36.3 \pm 1.0$ cm $\checkmark 1$ mk (must be to 1 d.p.)

(l)
$$f = \frac{L^2 - (V_2 - V_1)^2}{4L}$$

$$= \frac{50^2 - (36.3 - 14.5)^2}{4 \times 50} \checkmark correct substitution of student's value$$

=10.1238cm.

 $f=0.101238M \checkmark correct \ evaluation \ in \ metres(m) \ at \ least \ to \ 4s.f. \ 2mks$

$$(m)k = \frac{1}{0.101238} \checkmark \frac{1}{2} mk$$
 correct substitution of student's value

= 9.878D (dioptre) \checkmark ½ mk student's correct evaluation in dioptre(D) at least to 3d.p. 1mk

(f) k represents the power of the lens $\sqrt{1}mk$