URANGA PHYSICS EXAMINATION

Kenya Certificate of Secondary Education

232/1

PHYSICS

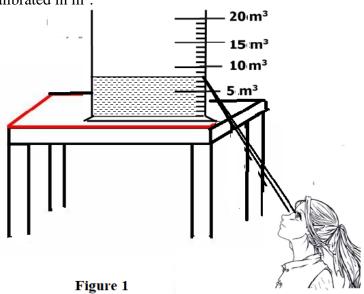
Paper 1

(Theory)

4TH EDITION (AUG/SEP. 2021) – TIME 2 Hours

Class	Name	:School:
Instructions to candidates a) Write your name, index number, class and school in the spaces provided above. b) Sign and Write the date of Examination in the spaces provided above. c) This paper consists of two sections; A and B. d) Answer all the questions in section A and B in the spaces provided. e) All working must be clearly shown. f) Silent non-programmable electronic calculators may be used.	Class	Adm NoIndex Number
 a) Write your name, index number, class and school in the spaces provided above. b) Sign and Write the date of Examination in the spaces provided above. c) This paper consists of two sections; A and B. d) Answer all the questions in section A and B in the spaces provided. e) All working must be clearly shown. f) Silent non-programmable electronic calculators may be used. 	Candi	date's Signature Date:
	a) b) c) d) e) f)	Write your name , index number , class and school in the spaces provided above. Sign and Write the date of Examination in the spaces provided above. This paper consists of two sections; A and B . Answer all the questions in section A and B in the spaces provided. All working must be clearly shown. Silent non-programmable electronic calculators may be used.

FOR EXAMINERS USE ONLY


SECTION	QUESTIONS	MAXIMUM	CANDIDATE'S
		SCORE	SCORE
A	1-13	25	
В	14	10	
	15	12	
	16	11	
	17	12	
	18	10	
TOTAL	SCORE	80	

This paper consists of 14 printed pages. Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

SECTION A (25 MARKS)

Answer all the questions in this section

1. **Figure 1** shows a girl viewing an overhead tank carrying a liquid of mass 8,400 kg. The tank is calibrated in m³.

The girl read the volume from the tank and then used it for further calculation. Determine the density of the liquid as obtained by the girl. (3 marks)

2. State two forces that can act on objects without physical contact. (2 marks)

3. **Figure 2** shows circuit of a fire alarm. When fire breaks it rings the bell to alert in case of fire breakout.

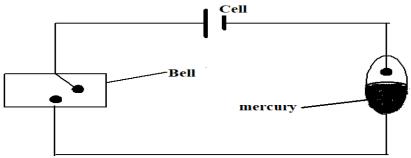


Figure 2

The Uranga Physics Examination 4th Edition August ©2021.

Give a reason why water is not suitable in the place of mercury at low temperatures	below 5°C.
	(1 mark)
4. Figure 3 represents the path taken in air by a smoke particle as observed	d by a student
during a Physics lesson.	
Figure 3	
(a) Explain how this movement can be observed.	(1 mark)
(b) State in full the law of motion that governs the movement from X to Z.	(1 mark)
5. Figure 4 shows a section of part of a scale of vernier calipers. The caliper	
measure a pipe whose diameter is 3.47cm, the instrument had a zero error	
Inset the vernier scale to show the reading displayed by the instru	ment in this
measurement.	(2 marks)
3 11 11 11 1 1 1 1 1 1	
Figure 4	
6. A can containing only air is tightly screwed and left in strong sunlight.	Using kinetic
theory of gases, explain how the pressure inside the can will be affected.	(3 marks)

7. **Figure 5** shows a man pushing down on a lever to lift one end of a heavy log. Assuming that he effective work done by the two arms the man is the same.

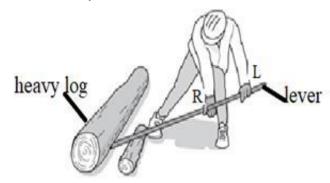


Figure 5

(a) Which of the two arms of the man is applying more force? (1 mark)

(b) **Figure 6** shows the forces acting as the man starts to lift the heavy log.

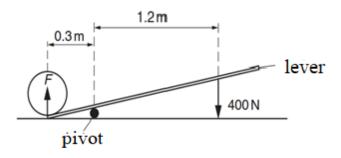
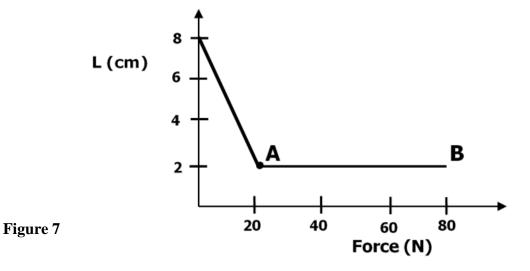
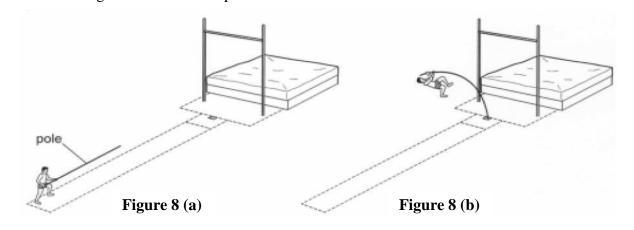



Figure 6

Calculate the force F, exerted by the lever on the heavy log.	(3 marks)
8. In an experiment to determine the volume of one drop of oil, stude from a burrete then they determine the volume change. The result we the volume of one drop. State the assumption made during their calculations.	was used to determine ulations. (1 mark)

The Uranga Physics Examination 4th Edition August ©2021.

9. A student performed an experiment to find out how the length L of a spiral spring varies with the compression force, F. **Figure 7** shows the results obtained.



Give a reason for the shape of the graph between 20N and 80N. (1 mark)

10. Water flows steadily in a tube of varying cross-sectional area of 120cm² and 40cm². If the velocity of the water in the wider section is 0.4m/s, calculate the velocity in the narrower section.

(2 marks)

11. **Figure 8 (a)** shows a stationary pole vaulter holding a straight pole. **Figure 8 (b)** shows him during the vault with the pole bent.

The Uranga Physics Examination 4th Edition August ©2021.

State two energy changes that takes place to enable the pole vaulter jump over successf	fully. (2 marks)
Figure 9 shows a painter climbing up a ladder resting on a sandy ground. Use it question 12 and 13.	to answer
Figure 9	
12. The painter observed that when he climbs up, the ladder sinks down into the	e sand but
when he is stationary at any height, the ladder does not sink yet his weight and	that of the
paint remains the same. Give a reason for this observation.	(1 mark)
13. Without making any changes on the way the ladder is placed, explain how the placed.	painter can
prevent the ladder from sinking when he climbs up.	(1 mark)

SECTION B (55 MARKS)

Answer all questions in this section

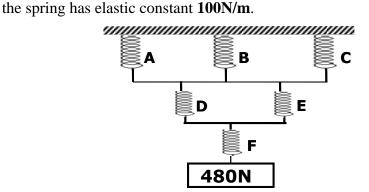
14.

(a) Other than being not visible give another reason why water is not a good barometric liquid. (1 mark)
(b) Figure 10 shows a hydraulic lift in a car repair workshop. The hydraulic fluid transmits the pressure caused by piston A, equally to each of the four pistons holding up the car supports. The pressure throughout the fluid is the same.
hydraulic fluid 4 pistons, each of area 0.02m^2
A force of 1000 N on piston A is just enough to raise the car. Determine; i. The pressure caused by piston A on the hydraulic fluid. (2 marks)
ii. The total upward force caused by the fluid. (3 marks)

The weight of each of the two car supports is 1000 N. Calculate the mass of the car.	
d) State two properties to be considered when choosing the hydraulic fluid used in the	
	(2 marks
15.	
a) State Newton's second law of motion.	(1 mark
b) Figure 12 shows a man trying to jump from a boat in water to the bridge at the	shore.
man	
bridge	
Figure 12 water	
is observed that the man landed in water. Explain why man landed in water.	(2 marks

c)

i. A careless motorcyclist of mass m_1 moving with a velocity v_1 hits a lorry of mass m_2 moving with a velocity v_2 from behind and gets stuck on the lorry as the lorry moves on for some time. Show that their common velocity v after the impact is given by:

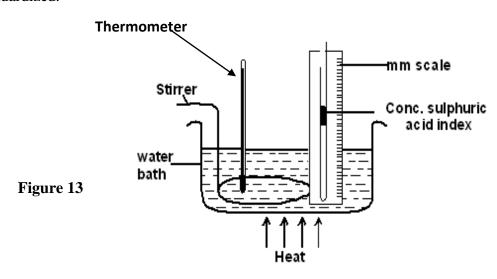

(2 marks)

$$v = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$$

ii. If the mass of the motorcyclist initially moving with velocity of 20m/s is 450kg and that of the lorry whose initial velocity is 15m/s is 6000kg, calculate the common velocity, v.

(2 marks)

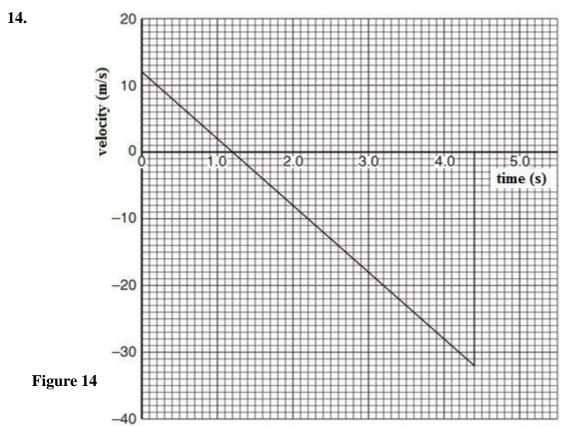
d) The diagram below shows a force of **480N** hanged on a set of 6 identical springs. Each of



(i) Determine the total extension of the system.		

(ii) State the assump	tion you made in the calculation in (i) abov	e. (1 mark)
16.		
a) You are provide	ed with an irregular lamina made from a m	anila paper, a complete stand
retort and boss,	a plumb line and pencil. Outline four step	ps to be followed in order to
determine the ce	ntre of gravity of the lamina.	(4 marks)
b) A solar panel is	mounted on the roof of a house. Figure 11	shows a section through part
of the solar pane		
trapped	sunlight	
air		copper pipe, painted black
wat	er	glass sheet
Figure 11	insulating material	 metal backing sheet, painted black
A pump makes water ci	rculate through the copper pipes. The water	r is heated by passing through
he solar panel. Give a re	eason for the following;	
(i) the pipes are	made of copper.	(1 mark)

(ii)	the pipes and the metal backing sheet are painted black.	(1 mark)
(iii) an insulating material is attached to the metal backing sheet.	(1 mark)
c)	During one day, 250 kg of water is pumped through the solar pane this water rises from 16 °C to 38 °C. The water absorbs 25% of the	el. The temperature of
	solar panel, and the specific heat capacity of water is 4200 J/kg.K. C	
i.	the heat energy absorbed by water.	(2 marks)
ii.	the energy falling on the solar panel during that day.	(2 marks)
17		


(a) **Figure 13** shows a set up to investigate one of the gas laws. All equipment are standardized.

The Uranga Physics Examination 4th Edition August ©2021.

i.Name the gas law being investigated.	(1 mark)
ii.Give two reasons for using the concentrated sulphuric acid index.	(2 marks)
iii.What is the purpose of the water bath?	(1 mark)
iv.State two measurements that should be taken in this experiment.	(2 marks)
v.Explain how the measurements taken in (iv) above may be used to verify the law.	
(b) A gas has a volume of 30cm ³ at 18°C and normal atmospheric pressure. Calcul	ate the
new volume of the gas if it is heated to 54°C at the same pressure.	(3 marks)

18. A boy stands at the top of a cliff of height, h, above the ground and throws a ball vertically upwards. The variation of time t and velocity v of the ball is shown in **Figure**

Use graph in Figure 14 to determine;

 i.	the time taken to reach the maximum height.	(1 mark)
 ii.	the time taken from the maximum height to the ground below the cliff.	(1 mark)
iii.	the maximum height above the base of the cliff to which the ball rises.	(3 marks)

iv.		marks)
	The hell has more 250 a Coloulete the magnitude of the above in more	
V.	The ball has mass 250 g. Calculate the magnitude of the change in mome the ball between the time that it leaves the girl's hand to time $t = 4.0$ s. (3)	marks)

THIS IS THE LAST PRINTED PAGE