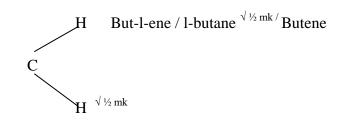
#### **CHEMISTRY PAPER 1**

# MARKING SCHEME

### **Question 1**

Due to incomplete  $\sqrt{\frac{1}{2}}$  mk combustion of the gas resulting to production of carbon particles  $\sqrt{\frac{1}{2}}$  mk which glow in  $\sqrt[4]{2}$  mk presence of heat to yellow colour.  $\sqrt[4]{2}$  mk 2mks

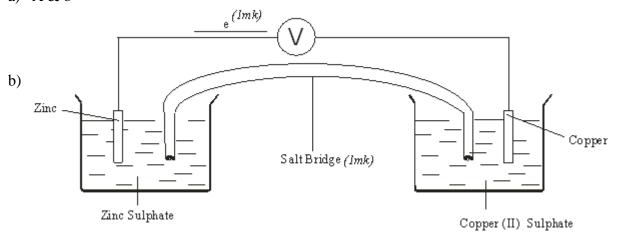

### **Question 2**

a) 
$$(CH_2)n = 42$$

$$(12 + 2) n = 42$$
  
 $n=3^{\sqrt{\frac{1}{2}} mk}$ 

$$Mf = 3(CH_2) C_3H_6^{\sqrt{\frac{1}{2}}mk}$$

b) 
$$C_nH_2n^{\sqrt{1mk}}$$




# **Question 3**

- $\sqrt{1}$  mk a) Z and Q
- $\sqrt{1}$  mk b) ST<sub>2</sub>
- $\sqrt{mk}$ c) Y

## **Question 4**

a) A & b



$$c) \quad Zn_{(s)} \; + \; Cu^{2^{+}}{}_{(aq)} \longrightarrow \quad Zn^{2^{+}}{}_{(aq)} \; + Cu_{(s)}$$

1mk

### **Question 5**

Structure of the monomer =

$$\begin{array}{ccccc} & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

RMM of monomer = 
$$62.5$$
  $\sqrt{\frac{1}{2}}$  mk

Number of monomers =  $\frac{6750}{62.5}$   $\sqrt{\frac{1}{2}}$  mk

=  $108.$   $\sqrt{\frac{1}{2}}$  mk

=  $\mathbf{Total\ 3mks}$ 

=

### **Question 6**

Chem. paper 1 m/scheme

Add water  $\sqrt[4]{2}$  mk to the mixture and stir to dissolve sodium carbonate. Filter  $\sqrt[4]{2}$  mk to remove sodium carbonate as filtrate and lead (II) carbonate as residue  $\sqrt[4]{2}$  mk. Heat  $\sqrt[4]{2}$  mk filtrate until saturation  $\sqrt[4]{2}$  mk and cool  $\sqrt[4]{2}$  mk to obtain sodium carbonate as crystals.

### **Question 7**

- (i) A white ring / solid  $^{\sqrt{\frac{1}{2}} \text{ mk}}$  was formed inside the combustion tube closer to the cotton wool soaked in concentrated Hydrochloric acid.  $^{\sqrt{\frac{1}{2}} \text{ mk}}$  Ammonia is lighter and diffuse faster.  $^{\sqrt{1} \text{ mk}}$
- (ii)  $NH_{3(g)} + HCl_{(g)} \longrightarrow NH_4Cl_{(s)}$

# **Question 8**

i) The yield of AB  $^{\sqrt{1} \text{ mk}}$  is increased.

The forward reaction is accompanied by a decrease in volume  $^{\sqrt{1/2}}$  mk. Equilibrium shifts to the right following the forward reaction.  $^{\sqrt{1/2}}$  mk

- ii) The yield of AB  $^{\sqrt{1} \text{ mk}}$  is increased.
- ✓ The forward reaction is exothermic.  $^{\sqrt{\frac{1}{2}}}$  mk
- $\checkmark$  Decrease in temperature favours the forward reaction, equilibrium shifting to the right.  $^{\sqrt{y_2} \text{ mk}}$

## **Question 9**

- $\checkmark$  C1 + (-2 x 4) = -1
- ✓ Cl 8 = -1
- ✓ Cl = -1 + 8 = +7  $\sqrt{1 \text{ mk}}$

### **Question 10**

- a) Gas cannot be collected by downward delivery as it is lighter than air. No gas collected as dilute Nitric acid would oxidize it to water.  $\sqrt{1 \text{ mk}}$
- b) Hydrogen brakes the double bonds in liquid oil making it saturated thus solidifies.  $^{\sqrt{1} \text{ mk}}$

### **Question 11**

- a)  $Na_2S_{(s)} + 2HCl_{(aq)} \longrightarrow 2NaCl_{(aq)} + H_2S_{(g)}$  1mk
- b) Turns Lead acetate black. 1mk
- c) Forms a dark brown / black ppt. when bubbled in a solution of metals ions.

#### **Question 12**

- a)  ${}^{14}_{6}^{N}$   ${}^{14}_{7}^{N}$   ${}^{1}_{-1}e$
- b) No. of t  $\frac{1}{2}$  to reduce activity to 12.5%

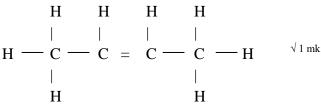
$$100\% \xrightarrow{t/2} \text{ to reduce activity to } 12.5\%$$

$$100\% \xrightarrow{t/2} \text{ 50\%} \xrightarrow{t/2} \text{ 25\%} \xrightarrow{t/2} \text{ 12.5\%} \xrightarrow{\sqrt{\frac{1}{2}} \text{ mk}}$$

No. of half litres  $(t \frac{1}{2}) = 3^{-\sqrt{\frac{1}{2}} mk}$ 

Age of fossil skull = 
$$3 \times 5730 \text{yrs}$$
  $\sqrt{\frac{1}{2} \text{ mk}}$  =  $17,190 \text{ years.}$ 

### **Question 13**


- a) (i) A Giant Ionic Structure  $\sqrt{1 \text{ mk}}$ 
  - (ii) B Giant Metallic Structure  $\sqrt{1 \text{ mk}}$
- b)
  - i) A Free ions  $\sqrt{\frac{1}{2}}$  mk
  - ii) B free (delocalized) electrons  $\sqrt[4]{\frac{2}{2}}$  mk

### **Question 14**

- a) Exp. 1. No change on the dry cloth because of the absence of hypochlorous acid responsible for bleaching  $^{\sqrt{1} \text{ mk}}$ 
  - Exp. 2 The wet cloth turned white due to bleaching as chlorine dissolves in water in the wet cloth to form hypochlorous  $^{\sqrt{1} \text{ mk}}$
- b)  $Cl_{2(g)} + H_2O_{(l)} \longrightarrow HCl_{(aq)} + HOCl_{(aq)}$   $\downarrow^{1/2} mk$  $Dye + HOCl_{(aq)} \longrightarrow \{Dye + [O]\} + HCl_{(aq)}$

#### **Question 15**

(i) But-2-ene  $\sqrt{1 \text{ mk}}$ 



(ii) Potassium chromate (VI) changes from orange to green because G is unsaturated.  $^{\sqrt{1} \text{ mk}}$ 

### **Question 16**

a)

- i) Froth floatation  $\sqrt{1 \text{ mk}}$
- ii) Concentration the mineral ore by making impurities to sink at the bottom  $^{\sqrt{1} \text{ mk}}$
- iii) Tin <sup>√1 mk</sup>

### **Question 17**

- a) A nitrogen (IV) oxide  $\sqrt{1 \text{ mk}} / \text{NO}_{2(g)}$ 
  - $B-Oxygen \: / \: O_{2(g)} \: \stackrel{\sqrt{1} \: mk}{}$
- b)  $2Pb(NO_3)_{2(s)} \longrightarrow 2PbO_{(s)} + 4NO_{2(g)}$

### **Question 18**

- a) Deliquescence <sup>√1 mk</sup>
- b) Efflorescence  $\sqrt{1 \text{ mk}}$
- c) Hygroscopy  $\sqrt{1 \text{ mk}}$

# **Question 19**

- i) Zinc Metal  $\sqrt{1 \text{ mk}}$
- ii)  $Zn(NH_3)_4^{2+}$   $\sqrt{1} mk$
- iii)  $Ba^{2+}_{(aq)} + SO_4^{2-}_{(aq)} \longrightarrow BaSO_{4(s)}$

## **Question 20**

#### **Question 21**

a) Solubility is the maximum mass in grammes of solute that will dissolve in 100g of water at a given temperature.  $^{\sqrt{1} \text{ mk}}$ 

OR

Is the mass in grams of solute required to make a saturated solution with 100g of water at a given temperature.

b) Mass of solid Y = 
$$30.4 - 26.2g$$
  
=  $4.2g^{\sqrt{\frac{1}{2}} \text{ mk}}$ 

Mass of water in the solution = 
$$42.4 - 30.4g$$
  
=  $12g^{\sqrt{\frac{1}{2}} \text{ mk}}$ 

12g of water dissolves 4.2g

Thus 100g of water dissolves = 
$$\frac{100}{12}$$
x 4.2g  $\sqrt{\frac{1}{2}}$  mk
$$= 35g / 100g H_2O$$

#### **Question 22**

- c) It is mainly air  $\sqrt{1 \text{ mk}}$  / mixture of air and the gas.

#### **Question 23**

$$Q = 1t$$

$$Q = 2.5 \times 25 \times 60 = 3750C$$

$$N^{2+} - 2 \text{ faradays}$$

$$1 \text{ faraday} - 96500 \times 2$$

$$3750C = 0.36g^{\sqrt{\frac{1}{2}} \text{ mk}}$$

$$Therefore, 96500 \times 2$$

$$= \underbrace{0.36}_{3850} \times 96500 \times 2$$

$$= \underbrace{0.36}_{18.528} \times 96500 \times 2$$

$$= 18.528$$

$$= \underbrace{18.528}_{18.5}$$

#### **Ouestion 24**

Dilute sulphuric (VI) acid  $\sqrt{1 \text{ mk}}$  has a higher electrical conductivity than concentrated sulphuric (VI) acid.

Reason;

 $\sqrt{1}$  mk Dilute sulphuric (VI) acid has more ions in solution than conc. Sulphuric (VI) acid.

## **Ouestion 25**

a)

- √ 1/2 mk i) SiO<sub>2</sub>
- √ ½ mk ii) SO<sub>2</sub>
- b)  $SiO_2$  has very strong  $\sqrt[4]{2}$  mk covalent bonds and giant covalent  $\sqrt[4]{2}$  mk structure resulting to high melting and boiling points.

 $SO_2$  has weak  $\sqrt{\frac{1}{2}}$  mk intermolecular forces and forms a molecular  $\sqrt{\frac{1}{2}}$  mk structure with extremely low melting and boiling points.

#### **Question 26**

$$\Delta H^{\theta} f (CO) + \Delta H^{\theta} c(CO) = \Delta H^{\theta} c(C)$$
 $-105 + \Delta H^{\theta} c(C) = -393^{-1 \text{ mk}}$ 
 $\Delta H_{c}^{\theta} = -393^{-105}^{-1 \text{ mk}}$ 
 $= -188 \text{KJmol}^{-1 \sqrt{1 \text{ mk}}}$ 

#### **Question 27**

- $\sqrt{1}$  mk a) Water
- b) The delivery tube  $^{\sqrt{1} \text{ mk}}$  should first be removed to avoid suck  $^{\sqrt{1} \text{ mk}}$  back (sucking back) of liquid M.

### **Ouestion 28**

- i) Brown fumes  $\sqrt{1 \text{ mk}}$  of nitrogen (iv) oxide
- ii) Nitric (v) acid is a strong oxidizing agent and thus oxidizes carbon to carbon (iv) oxide  $\sqrt[4]{2}$  mk and itself reduced to nitrogen (iv) oxide  $\sqrt[4]{\frac{1}{2}}$  mk
- iii)  $C_{(s)} + HNO_{3(l)} \longrightarrow 4NO_{2(g)} + CO_{2(g)} + 2H_2O_{(l)}$   $^{\sqrt{1} mk}$