URANGA PHYSICS JOINT EXAMINATION

Kenya Certificate of Secondary Education

FORM 3 PHYSICS

- Paper 3

JUNE 2021 - 2\frac{1}{2} Hours

NAME:	ADM NO:
SCHOOL:	
Candidate's Signature:	Date:

Instructions to candidates

232/3

- 1. Write your Name, Admission number and Name of school in the spaces provided above.
- 2. Sign and write the date of Examination in the spaces provided above.
- 3. Answer all questions in the spaces provided.
- 4. You are supposed to spend the first 15 minutes of the hours allowed for this paper reading the whole paper carefully before commencing your work.
- 5. Marks will be given for clear records of observations actually made, their suitability, accuracy and the use made of them.
- 6. Students are advised to record their observations as soon as they are made.
- 7. All working must be clearly shown where necessary.
- 8. Mathematical tables and silent electronic calculators may be used.
- 9. Answer the questions in English.
- 10. This paper consists of 8 printed pages. Students are advised to check that all pages are printed as indicated and no questions are missing.

For Examiners Use Only

QUESTIONS	MAXIMUM SCORE	STUDENT'S SCORE
1	20	
2	20	
TOTAL	40	

TURN OVER

QUESTION 1

You are provided with the following:

- Vernier calipers (to be shared)
- Rectangular glass prism
- White sheet of paper
- Soft board.
- Protractor.
- 30 cm transparent ruler.
- Four optical pins.
- A metre-rule
- A stop watch
- A marble
- A watch glass
- Some plasticine
- Micrometer screw gauge (to be shared)

PART A

Proceed as follows: -

(a) Draw the outline of the glass prism on the sheet of paper provided as shown in **figure 1**.

(b) Using the vernier calipers, measure the actual breadth, **b** of the glass prism.

(1 mark)

b =cm

(c) Along the side **AB**, construct a normal **XY** about 3 cm from point **A** to cut line **AB** at point **O**. This is shown in **figure 2**.

NB: Attach the piece of paper to your question paper for marking.

(2 marks)

- (d) At the normal, construct an angle of 40^0 being the angle of incidence (i) as shown in **figure 2.**
- (e) Insert two pins P_1 and P_2 along the path drawn as indicated in **figure 2**.

- (f) Produce P_1P_2 with a dotted line to cut line DC and beyond.
- (g) View through the glass prism from the side DC and insert pins P_3 and P_4 to be in a straight line with the images of pins P_1 and P_2 .
- (h) Join line P_3 and P_4 to meet line DC at Z.
- (i) Join point **Z** to point **O** with a straight line.
- (j) Measure angle **YOZ** which is the angle **m**.

 $\mathbf{m} = \dots$ (1 mark)

- (k) Given that; $\mathbf{n} = \frac{\sin t}{\sin m}$, determine the value of \mathbf{n} . (2 marks)
- (l) Measure \mathbf{d} , the perpendicular distance between the line P_1P_2 and the line P_3P_4 produced.

(m)Determine the value of **t**, given that; (3 marks)

 $d = \frac{t \sin(i-m)}{\cos m}$

PART B

Proceed as follows: -

(n) Arrange the apparatus as shown in **figure 3**:

Figure 3

(o) Place the marble on one end of the watch glass and release it from the edge of the watch glass to oscillate freely. Record the time $\mathbf{t_1}$ taken by the marble to make 5 complete oscillations. Repeat this 2 times and calculate the average time for 5 oscillations. Complete $\mathbf{table}\ \mathbf{1}$ below.

	Table 1		(3 marks)
t ₁ (s)	t ₂ (s)	$t_{AVR} = \frac{t_1 + t_2}{2}$ (s)	

t ₁ (s)	$\mathbf{t}_2(\mathbf{s})$	$t_{AVR} = \frac{\mathbf{t}_1 + t_2}{2} $ (s)

(p) Calculate the periodic time, **T**(s).

$$T = \dots s$$
 (1 mark)

(q)

i. Measure the diameter, **D** of the marble using the micrometer screw-gauge.

$$\mathbf{D} = \dots \mathbf{m} \tag{1 mark}$$

ii. Determine the volume, **V** of the marble. (Take $\pi = 3.142$)

$$V = \dots (2 marks)$$

(r) The period, **T**, of oscillation of the marble is related by the equation:

$$T=2\pi\sqrt{\frac{7(b-r)}{5g}}$$

Where \mathbf{r} is the radius of the marble; $\mathbf{g} = \mathbf{10} \text{ m/s}^2$ and \mathbf{b} is a constant of the watch glass. Determine the value of \mathbf{b} .

QUESTION 2

You are provided with the following:

- A resistance wire PQ mounted on millimeter scale.

- Two dry cells in a cell holder.
- An ammeter.
- A voltmeter.
- A switch.
- Six connecting wires (at least two with a crocodile clip at one end)

Proceed as follows: -

a. Set up the circuit as in figure 4 and determine the total electromotive force, E, of the cells.

Figure 4

(1 mark)

b. Set up the circuit as in shown in **figure 5**.

- **c.** Connect the wire with clip on the mounted wire at a length, $\mathbf{L} = 70.0$ cm from the end marked
 - **P**. Read and record the readings of voltmeter and ammeter in **table 2** provided.
- **d.** Repeat the procedure in (c) above for other values of L given in the **table 2** below. (5 marks)

Table 2

Length L(cm)	70	50	40	30	20	10
Current, I(A)						
P.d, V (volts)						

e. On the grid provided, plot a graph of p.d (y-axis) against I (A). (5 marks)

f. Determine the slope of the graph.

(3 marks)

g. (• Given that the graph is governed by the equation $V = -Ir + E$, determine:			
((i)	the e.m.f of the two cells in series.	(2 marks)	
((ii)	the internal resistance of the two cells.	(1 mark)	

THIS IS THE LAST PRINTED PAGE