## URANGA PHYSICS EXAMINATION



### Kenya Certificate of Secondary Education

# 232/1 PHYSICS Paper 1

(Theory) **FORM 3** 

## 4<sup>TH</sup> EDITION (FEBRUARY 2022) – TIME: 2 Hours

| Nama: |                                 |
|-------|---------------------------------|
|       | Candidate's Sign: Date:/02/2022 |

#### INSTRUCTIONS TO CANDIDATES

- a) Write your name, school and admission number in the spaces provided above.
- b) Sign and write the date of examination in the spaces provided.
- c) This paper consists of two sections: **A** and **B**.
- d) Answer ALL questions in section A and B in the spaces provided below each question.
- e) ALL working **must** be clearly shown.
- f) Silent non programmable electronic calculators may be used.
- g) This paper consists of **14 printed pages**. Candidates should check the question paper to ensure that all pages are printed as indicated and that no questions are missing.
- h) All questions must be answered in ENGLISH.

#### FOR EXAMINER'S USE ONLY.

| SECTION | QUESTIONS | MAXIMUM<br>SCORE | CANDIDATE'S<br>SCORE |
|---------|-----------|------------------|----------------------|
| A       | 1 – 13    | 25               |                      |
|         | 14        | 07               |                      |
| В       | 15        | 10               |                      |
|         | 16        | 12               |                      |
|         | 17        | 07               |                      |
|         | 18        | 08               |                      |
|         | 19        | 11               |                      |
| TOTA    | L SCORE   | 80               |                      |

### **SECTION A [25 MARKS]**

1. **Figure 1** shows a section of a micrometer screw gauge.



Fig. 1

The micrometer screw gauge is used to measure the diameter of a marble. What is the diameter of the marble if micrometer screw gauge has an error of -0.02mm? (1 mark)

2. State the reason why bodies have more weight on earth than on the moon. (1 mark)

3. **Figure 2** shows a measuring cylinder which contains water initially at a level A. When a spherical solid of mass 11g is immersed in the water, the level rises to B.



Fig. 2

| Determine the diameter of the spherical ball. | (2 marks) |
|-----------------------------------------------|-----------|
|                                               |           |
|                                               |           |
|                                               |           |

4. **Figure 3** shows a clinical thermometer which is not graduated.



|                                           | - Fig. 3                                                                            |              |  |
|-------------------------------------------|-------------------------------------------------------------------------------------|--------------|--|
| State the function of the part labeled B. |                                                                                     | (1 mark)     |  |
|                                           |                                                                                     |              |  |
| 5.                                        | A pipe of radius 0.4cm is connected to another pipe of radius 0.6cm. If water flows | in the wider |  |
|                                           | pipe at a speed of 5m/s, determine the speed of the water in the narrower section.  | (2 marks)    |  |
|                                           |                                                                                     |              |  |
|                                           |                                                                                     |              |  |
| · • •                                     |                                                                                     |              |  |
|                                           |                                                                                     |              |  |

6. **Figure 4** shows a uniform bar of length 1.0 m pivoted near one end. The bar is kept in equilibrium by a spring balance as shown.



Fig. 4

| Given that the reading of the spring balance is 0.6 N, determine the weight of the metre rule. |           |  |
|------------------------------------------------------------------------------------------------|-----------|--|
|                                                                                                | (3 marks) |  |
|                                                                                                |           |  |
|                                                                                                |           |  |
|                                                                                                |           |  |
|                                                                                                |           |  |

7. **Figure 5** shows a tape obtained from an experiment using a ticker – timer of frequency 50Hz.



| Calculate the acceleration of the body whose motion is represented by the tape. | (3 marks) |
|---------------------------------------------------------------------------------|-----------|
|                                                                                 |           |
|                                                                                 |           |
|                                                                                 |           |
|                                                                                 |           |
|                                                                                 |           |

8. A steel ball is dropped into a cylinder containing oil. Sketch on the axes given below a graph showing the variation of acceleration with time. (1 mark)



| 9.      | State how heat losses by convection and radiation are minimized in a thermos flask. (2 ma | rks)      |
|---------|-------------------------------------------------------------------------------------------|-----------|
| • • • • |                                                                                           |           |
|         |                                                                                           |           |
|         |                                                                                           |           |
| • • • • |                                                                                           | • • • • • |

| 10. Give         | e the reasons why a safety seat belt used in a vehicle;                                                  |                                        |
|------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------|
| (i)              | Should have a wide surface area.                                                                         | (1 mark)                               |
| (ii)             | Should be slightly extensible.                                                                           | (1 mark)                               |
|                  | Should be slightly extensione.                                                                           | , , ,                                  |
| 11. <b>Fig</b> u | <b>ure 6</b> shows a mass of 6kg hanged on a set of 3 identical springs.                                 |                                        |
|                  | /////////////////////////////A                                                                           |                                        |
|                  | A A                                                                                                      |                                        |
|                  | C 2000 B                                                                                                 |                                        |
|                  | Fig. 6                                                                                                   |                                        |
|                  | a mass of 750g was hanged on spring A, its extension was 5cm ation shown if each spring has mass of 50g. | n. Find the extension of the (3 marks) |
| COMOM            | ation shown it each spring has mass of 30g.                                                              | (3 marks)                              |
|                  |                                                                                                          |                                        |
| •••••            |                                                                                                          |                                        |
|                  |                                                                                                          |                                        |
|                  | eel needle when placed carefully on water can be made to float.                                          | _                                      |
| the v            | water it sinks. Explain this observation.                                                                | (2 marks)                              |
|                  |                                                                                                          |                                        |
|                  |                                                                                                          |                                        |

13. **Figure 7** shows the behavior of mercury in a capillary tube.



**Fig. 7** 

| Explain the behavior. | (2 marks) |
|-----------------------|-----------|
|                       |           |
|                       |           |
|                       |           |

| 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              |                                |              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------|--------------|
| (a) Define the term ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | locity.                      |                                | (1 mark)     |
| (b) <b>Figure 8</b> below show the state of the s | ows the velocity-time graph  | of for the journey of a car in | 100 minutes. |
| Fig. 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Time (min)                   | 50 80 100                      |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eleration of the car between |                                |              |
| (ii) Determine the disp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | placement by the car during  | the journey.                   | (2 marks)    |
| (iii)Determine the aver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rage velocity of the car.    |                                | (2 marks)    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                                |              |

| 15.          |                                                                                                                                                                                                                 |                      |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| (a) S        | tate Hooke's law.                                                                                                                                                                                               | (1 mark)             |
|              |                                                                                                                                                                                                                 |                      |
| (b)          |                                                                                                                                                                                                                 |                      |
| (i)          | A vertical spring of outstretched length 30cm is clamped at its placed on a pan attached to the lower end of the spring its length 20g mass is placed on top of the sand, the length increases to 55c the sand. | becomes 45cm. When a |
|              |                                                                                                                                                                                                                 |                      |
|              |                                                                                                                                                                                                                 |                      |
|              |                                                                                                                                                                                                                 |                      |
|              |                                                                                                                                                                                                                 |                      |
|              |                                                                                                                                                                                                                 |                      |
| (ii)         | If the spring in (i) above is compressed from its original length to a done in compressing the spring.                                                                                                          | (2 marks)            |
|              |                                                                                                                                                                                                                 |                      |
|              |                                                                                                                                                                                                                 |                      |
|              |                                                                                                                                                                                                                 |                      |
| (c) <b>I</b> | <b>Figure 9</b> shows the variation of force (N) with extension (mm) for a                                                                                                                                      | certain spring.      |



(b) A body **P** of mass 4 kg supported by alight inextensible string 4m long held at an angle of 60° from the vertical position as shown in **Figure 10** below. A second body **R** of mass 4kg rests at the edge of a platform 2 m high, the body is released and strikes body **R** head-on in a perfectly elastic collision.



**Fig. 10** 

|                                         | (i) Explain the term elastic collision.                                                           | (1 mark)                                |
|-----------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------|
|                                         |                                                                                                   |                                         |
|                                         |                                                                                                   |                                         |
|                                         | (ii) Determine the maximum height, $\mathbf{h}$ attained by body $\mathbf{P}$ above the platform. | (2 marks)                               |
|                                         |                                                                                                   |                                         |
|                                         |                                                                                                   |                                         |
|                                         |                                                                                                   | •••••                                   |
|                                         | (iii) Determine how long it takes for body $\mathbf{R}$ to strike the ground after being hit by   | y <b>P</b> .                            |
|                                         |                                                                                                   | (3 marks)                               |
| • • • • • • • • • • • • • • • • • • • • |                                                                                                   |                                         |
|                                         |                                                                                                   |                                         |
|                                         |                                                                                                   |                                         |
|                                         |                                                                                                   | • • • • • • • • • • • • • • • • • • • • |

| (iv)Determine the horizontal velocity of body <b>R</b> .                              | (2 marks)                        |
|---------------------------------------------------------------------------------------|----------------------------------|
|                                                                                       |                                  |
| (v) How far from the base of the platform will body $\bf R$ strike the ground $\bf R$ | ound if <b>P</b> stops after the |
| collision?                                                                            | (2 marks)                        |
|                                                                                       |                                  |
|                                                                                       |                                  |
| (c) A parachutist allows his leg to bend and roll over on the ground when             |                                  |
|                                                                                       | (1 mark)                         |
|                                                                                       |                                  |
| 17. (a) What is diffusion?                                                            | (1 mouls)                        |
| (a) what is diffusion?                                                                | (1 mark)                         |
|                                                                                       |                                  |
| (b) A smoke cell contains a mixture of trapped air and smoke. The cell is             | s brightly lit and viewed        |
| through a microscope. State and explain what is observed.                             | (2 marks)                        |
|                                                                                       |                                  |
| (c) A beaker is filled completely with water. A spoon full of common s                | alt is added slowly. The         |
| salt dissolves and the water does not overflow. State the reason why v                |                                  |
|                                                                                       | (1 mark)                         |
| (d) In <b>figure 11</b> below, ammonia gas and an acid gas diffuse and react to       |                                  |
| the walls of a long glass tube as shown.                                              |                                  |



**Fig. 11** 

|         | (i) What conclusion can be made from the result of this experiment?                                                                          | (1 mark)                 |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|         | (ii) How does the size and mass of a gas affect its rate of diffusion?                                                                       | (1 mark)                 |
|         | (iii)The experiment is performed at a lower temperature. Explain how the tim the white deposit would be affected.                            | e taken to form (1 mark) |
| <br>18. | a) A pulley system having a velocity ratio of 5 is used to raise a load of 800 N the                                                         |                          |
|         | of 0.6 m at a constant speed using an effort of 200 N in a time of 15 seconds.  (i) Calculate the mechanical advantage of the pulley system; | (2 marks)                |
|         | (ii) Find the efficiency of the pulley system;                                                                                               | (2 marks)                |
|         | (iii)Calculate the power developed by the effort.                                                                                            | (2 marks)                |
|         |                                                                                                                                              |                          |

|                   | iv) Give <b>two</b> reasons why the efficiency of the pulley system is less than 100 %.                                                                                                                                                                           |                              |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
|                   |                                                                                                                                                                                                                                                                   |                              |
| <br>19.           |                                                                                                                                                                                                                                                                   |                              |
| • • • • • • • • • | State the Pascal's principle of fluid pressure transmission.                                                                                                                                                                                                      |                              |
| (b)               | The atmospheric pressure at the foot of Mt. Longonot is 760mmHg while at the mountain, the pressure is 580mmHg. Given that the density of mercury is 13,60                                                                                                        | ne top of the                |
| •••••             | for air is 1.3Kgm <sup>-3</sup> , find the height of the mountain.                                                                                                                                                                                                |                              |
|                   |                                                                                                                                                                                                                                                                   |                              |
| (c) S             | State one limitation of a lift pump.                                                                                                                                                                                                                              | (1 mark)                     |
| (d) 1             | In an experiment to determine the size of a molecule of oil, a single drop of oil from a burette onto a tray and it spread to form a circular patch of diameter 2 molecule of oil is estimated to have a diameter of $1.67 \times 10^{-8}$ m and takin determine: | was released<br>20cm. If one |
| (i                | i) The area of the patch.                                                                                                                                                                                                                                         | (1 mark)                     |
|                   |                                                                                                                                                                                                                                                                   |                              |
| (i                | ii) The volume of the drop from the burette.                                                                                                                                                                                                                      | (2 marks)                    |
|                   |                                                                                                                                                                                                                                                                   |                              |
|                   |                                                                                                                                                                                                                                                                   |                              |

| · /  | The size of the oil molecule. | (2 marks)                                                    |
|------|-------------------------------|--------------------------------------------------------------|
|      |                               |                                                              |
| <br> |                               |                                                              |
|      |                               |                                                              |
| (iv) |                               | the have a weight of $4.984 \times 10^{-5}$ N, calculate the |
|      | density of the oil.           | (2 marks)                                                    |
|      |                               |                                                              |
| <br> |                               |                                                              |
| <br> |                               |                                                              |
|      |                               |                                                              |

### THIS IS THE LAST PRINTED PAGE