URANGA PHYSICS EXAMINATION Kenya Certificate of Secondary Education # 232 FORM 3 PHYSICS (Theory) 4TH EDITION (DEC. 2021, TERM 2) – TIME 2 Hours | Name | e:Adm NoClass | |---|---| | Schoo | ol: Student's | | Signa | tureDate: | | Instru | ctions to candidates | | a)b)c) | Write your name , admission number , class and school in the spaces provided above. Sign and Write the date of Examination in the spaces provided above. This paper consists of two sections; A and B . | | d)e)f)g) | Answer all the questions in section A and B in the spaces provided. All working must be clearly shown. Silent non-programmable electronic calculators may be used. Students should answer the questions in English . | | | | ### FOR EXAMINERS USE ONLY | SECTION | QUESTIONS | MAXIMUM
SCORE | CANDIDATE'S SCORE | |-------------|-----------|------------------|-------------------| | A | 1-13 | 25 | | | В | 14 | 11 | | | | 15 | 12 | | | | 16 | 11 | | | | 17 | 10 | | | | 18 | 11 | | | TOTAL SCORE | | 80 | | This paper consists of 13 printed pages. Students should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing. ### **SECTION A (25 MARKS)** ## (Answer all the questions in this section) | 1. State one use of charged gold leaf electroscope. | (1 mark) | |--|---------------| | 2. Explain why steel is selected as better material for reinforcement for a concrete b | eam. (1 mark) | | 3. Name the two necessary conditions for a body to be in equilibrium. | (2 marks) | | | | | 4. Figure 1 shows apparatus used to observe the behavior of smoke particles in air. Microscope | | | Thin glas | s lid | | Smoke and air Fig. 1 | | | Why are smoke particles suitable for use in this experiment? | (1 mark) | | 5. | Kiss FM broadcasts at a frequency of 100Hz. If the velocity of the radio waves is $3.0x10^8$ m/s, | | | | | |------|---|--|--|--|--| | •••• | Calculate the wavelength of radio waves. | (2 marks) | | | | | | | | | | | | 6. | Name two measurements that should be taken for one to de is due for charging. | cide whether a Lead Acid accumulator (2 marks) | | | | | | | | | | | | 7. | On the axes provided below, sketch the velocity-time grafluid. | ph of a body moving down a viscous (1 mark) | | | | | | Velocity (m/s) | | | | | | | Time | (s) > | | | | | 8. | State Newton's second law of motion. | (1 mark) | | | | | | | | | | | | | | | | | | 9. **Figure 2** shows a metal plate 2m long 1m wide and negligible thickness. A horizontal force of 50N applied at point 'A' just makes the plate tilt. Fig.2 | Calculate the weight of the plate. | (3 marks) | |--|---| 10. A body of mass \mathbf{M} moving at a velocity \mathbf{u} on a hor | izontal surface stops after moving a distance | | s, if it attains a velocity v after t seconds. Show that | $s=ut+^{1}/_{2}at^{2}$ where a is its acceleration. | | | (3 marks) | 11. | | | (a) State Snell's Law. | (1 mark) | | | | | | | | | | | (b) Give two conditions necessary for total internal reflection to occur. | (2 marks) | |---|------------------------------| | | | | | | | | | | 12. A car of mass 1,200kg moving at 90 km/h is brought to rest over a distance of 2 breaking force. | 20m. Calculate the (3 marks) | | | | | | | | | | | 13. Curtain on the doors and windows are seen to bulge or hang outwards from a roa wind blowing across them. Explain this phenomenon. | oom when there is (2 marks) | | | | | | | | | | ### **SECTION B** ### (Answer all the questions in this section) 14. (a) Using the pulley system shown in **figure 3**, a mass of 10kg is raised through 2m using a force of 80N. *Fig. 3* Calculate; | | (i) | Mechanical advantage. | (2 marks) | |------|-------|-----------------------|-----------| | | | | | | •••• | | | | | | (ii) | Velocity ratio. | (1 mark) | | | | | ••••• | | | (iii) | Efficiency. | (2 marks) | | | | | | | | | | | |
(1V)
 | Distance moved by the effort. | (2 marks) | |--|---|-----------| |
(v) | Suggest two reasons why efficiency of a machine is never 100% | (2 marks) | |
 | ometimes work is not done even if there is an applied force. Give two situa | | |
ca | n happen. | (2 marks) | |
 | | | |
a)
(i) | State one difference between: Mechanical and electromagnetic waves. | (1 mark) | |
······································ | Stationary ways and progressive ways | | |
(ii)
 | Stationary waves and progressive waves. | (1 mark) | |
 | | | | | Briefly describe how sound is propagated in air. | (1 mark) | |------|--|--| | | | | | c) | Figure 4 shows a set up by a student. Electric bell Steam from boiling water | | | | Fig. 4 | | | (i) | State what happens to the sound from the bell as the bottle at 0°C. | nd its contents are cooled to (1 mark) | | | | | | (ii) | Explain the observation you have stated in (i) above. | (2 marks) | | | | | | e) State two factors that affect the speed of the sound in air. | (2 marks) | |--|-----------| | | | | 16. | | | (a) State Ohms Law. | (1 mark) | | | | | (b) Figure 5 shows a series – parallel circuit. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | (i) Total resistance of the circuit. | (3 marks) | | | | | | (ii) | Total current flowing in the circuit. | (2 marks) | |----|--------|--|--------------| | | | | | | | (iii) | Voltage drop across R ₁ | (2 marks) | | | | | | | | | Current through the 3Ω resistor. | (3 marks) | | | | | | | | | | | | | ••••• | | | | 17 | | crease in temperature weakens or destroys magnetism of a magnet. Explain | a. (2 marks) | | | | | | | | | | | | | (b) Fi | gure 6 shows part of a motor. | | | (1) | Name the part labelled X . | (1 mark) | |-------|---|-----------| | (ii) | Suggest two ways in which the motor could be made to go faster. | | |
 | | | | (iii) | Explain how the motor works. | (3 marks) | |
 | | | | | | | | | Give two applications of soft magnetic materials. | (2 marks) | |
 | | | | | | | 18. The graph below shows the relationship between magnifications of the image against image distance of a concave mirror. Use the information on the graph to answer questions that follow. a) (i) Given the formula $M=\frac{\mathrm{v}}{\mathrm{f}}-1$, find the slope of the graph and hence the local length \mathbf{f} of the mirror. (4 marks) | | (ii) | Determine the object distance when M=1.5 | (3 marks) | |-----|------|--|-----------| | ••• | | | | | | | | | | | | | | | ••• | ŕ | Give two reasons why convex mirror are preferred as driving mirrors. | (2 marks) | | | | | | | | ŕ | State and explain the effect of enlarging the pinhole in a pinhole camera. | (2 marks) | | | | | | | | | | | | | | | | # THIS IS THE LAST PRINTED PAGE