URANGA PHYSICS EXAMINATION

Kenya Certificate of Secondary Education JOINT EXAMINATIONS 2021 FORM 3

232/1

PHYSICS

Paper 2

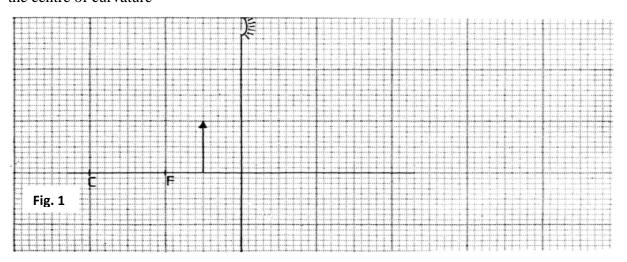
June 2021 - TIME 2 Hours

Name:	Adm No:
Candidate's Signature:	Date :/06/2021.

Instructions to candidates

- a) Write you name, admission number, school and date in the spaces provided above. .
- b) This paper consists of **two** sections; **A** and **B**.
- c) Answer all the questions in section A and B in the spaces provided.
- d) All working **must** be clearly shown.
- e) Silent non-programmable electronic calculators may be used.
- f) Candidates should answer the questions in **English**.

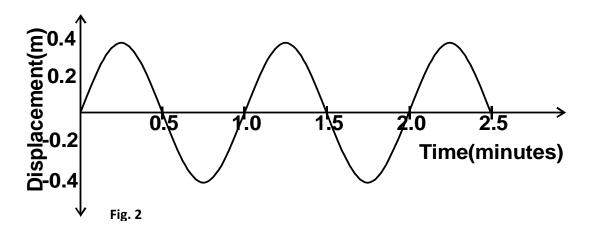
For Examiners use only


SECTION	QUESTIONS	MAX. SCORE	CANDIDATE'S SCORE
A	1-13	25	
В	14	11	
	15	09	
	16	15	
	17	12	
	18	08	
TOTAL SCORE		80	

This paper consists of 12 printed pages. Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

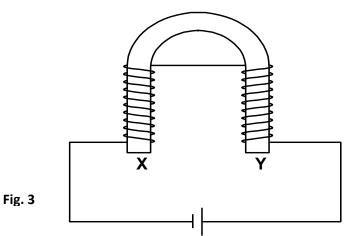
SECTION A - 25MARKS

Attempt all questions in the spaces provided.


1. **Figure 1** shows an object placed in front of a concave mirror of focal length 10cm. C is the centre of curvature

On the same figure draw a ray diagram showing the location of the image. (2 marks)

- 2. State two factors that determine the resistance of a conductor. (2 marks)
- 3. An uncharged metal rod brought closes but not touching the cap of a charged electroscope causes a decrease in the divergence of the leaf. Explain. (1 mark)
- 4. Explain how polarization reduces current in a simple cell. (1 mark)


5. **Figure 2** shows how the displacement varies with time for a certain wave.

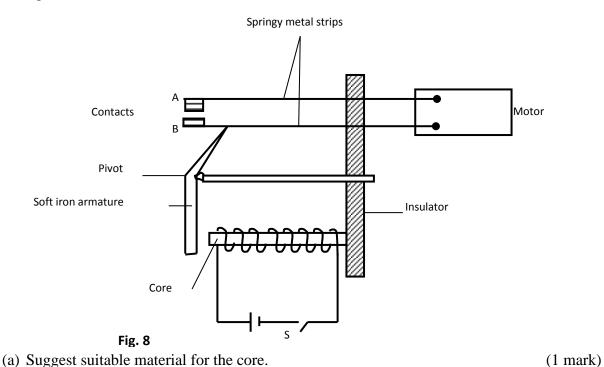
Determine the frequency of the wave.	(2 marks)
6. State one difference between an image formed by a plane	mirror and that observed
through a pinhole camera.	(1 mark)

.....

7. **Figure 3** shows an electromagnet. State the polarities at X and Y. (2 marks)

8. A student shouts and hears an echo after 0.6 seconds. If the velocity of sound is 330m/s, calculate the distance between student and reflecting surface. (3 marks)

9.	Figure 4 shows two					ent on one
	of the mirrors as sho	wii. Trace tile ray	or light thio	ugh the militors	1.	(2 marks)
		<u>/////////////////////////////////////</u>	<u>////////</u>	<u> </u>	M_1	
	Fig. 4	20°	·/////////////////////////////////////		M_2	
10.	An electromagnet is	made by windir	ng insulated of	copper wire on	an iron cor	e. State two
	changes that could be	e made to increas	se the strength	of the electron	nagnet.	(2 marks)
11.	State two distinction transmitted.	ns between the	way sound v	waves and elec	etromagnetic	c waves are (2 marks)
12.	Figure 5 shows two	narallel current-	earrying cond	uctors A and B	through a r	viece of
12.	cardboard.	paramer current c		actors At and B	unough u p	7
	Fig. 5		À	В		4 Page


i.	Sketch the magnetic field pattern produced.	(2 marks)
ii.	Identify the nature of the force between them	(1 mark)
13. Figu	are 6 shows a path of a ray of light through a rectangular bl	ock of Perspex placed in
air.	42.5	
	Fig. 6	
Calculate	e the refractive index of Perspex.	(2 marks)
	SECTION B – 55 MARKS.	
14.		
a. S	State Ohms law.	(1 mark)
b. I	Figure 7 below shows three resistors as shown.	
	6Ω 8Ω	

3Ω

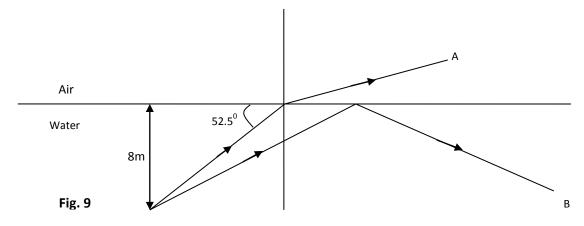
Fig. 7

	tive Resistance.	(2 marks)
(ii) Curre	nt through the 3Ω resistor	(2 marks)
(iii) Po	otential difference across the 8Ω resistor.	(2 marks)
c.		
(i)	What is meant by the term "internal resistance"?	(1 mark
	What is meant by the term "internal resistance"?	(1 mark)

15. **Figure 8** shows an electromagnetic relay being used to switch an electric motor on and off. The electromagnet consists of a coil of wire wrapped around a core. The motor in figure is switched off.

(b) What happens to the core when switch S is closed?

(c) Why do the contacts A and B close when the switch S is closed.


(d) When the switch S is opened, what will happen to;

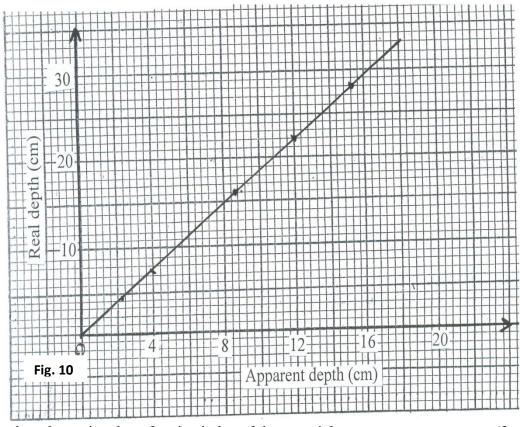
(i) The core

(1 mark)

(e) Give one other application of an electromagnet.	(1 mark)
(f) State two ways in which an electromagnet could be made more powerful.	(2 marks)
16. a. State Snell's law.	(1 mark)
b. Plane water waves produced in a ripple tank are passed from a region of cregion of shallow water. Figure 9 shows the top view of the tank. Boundary	
Deep water Shallow w Fig. 8 State what happens at the boundary to:	ater
i. The frequency of the waves.	(1 mark)
ii. The speed of the waves.	(1 mark)
iii. The wavelength of the waves.	(1 mark)

c. **Figure 9** shows a ray of light incident on a water-air interface from a source 8m deep.

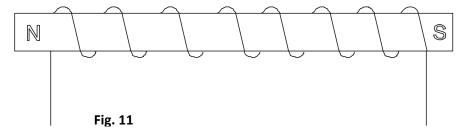
- (i) Ray A is observed to bend as it enters the air. Give a reason why this occurs. (1 mark)
- (ii) If the refractive index of water is 1.35, calculate the angle of refraction of ray A.

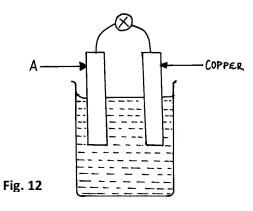

 (3 marks)

(iii)Find the critical angle of water. (3 marks)

(iv) Give a reason why ray B is not travelling out of water. (1 mark)

.....


d. In an experiment to determine the refractive index of a material using real and apparent depth method, a graph of real depth against apparent depth was draw as shown in **figure** 10.


Use the graph to determine the refractive index of the material.	(3 marks)
17.	
a. State the difference between a transverse wave and a longitudinal wave	(2 marks)
b. Give one example of a transverse and one example of a longitudinal wave.	(2 marks)

c.	When a metre rule was placed in a ripple tank, it was noted that the distance between 15 successive dark lines (crests) was 30cm. The frequency of the vibrator was 20HZ.			
	Determine:	and these (elests) was seem. The frequency of the victator was	, 201121	
	i)	One wave length of the waves in the ripple tank.	(2 marks)	
	ii)	The periodic time of the wave.	(2 marks)	
	iii) 	The velocity of the waves over the water surface.	(3 marks)	
18.		······································		
a.		w of magnetism	(1 mark)	
b.	State the dif	ference between magnetic properties of steel and soft iron.	(1 mark)	
c.	State two w	vays of demagnetizing a magnet	(2 marks)	

d. **Figure 11** shows a circuit that can be used to magnetize a given bar. Indicate the direction of the current around the bar that will result the polarities shown. (1 mark)

e. **Figure 12** shows the set – up for a simple cell.

. /	Name the electrode A.	(1 mark)
ii)	Explain why the bulb goes off after only a short time.	(1 mark)
	How can the problem stated above be corrected.	(1 mark)

THIS IS THE LAST PRINTED PAGE