URANGA PHYSICS EXAMINATION

Kenya Certificate of Secondary Education JOINT EXAMINATIONS 2021 FORM 3

232/1

PHYSICS

Paper 1

June 2021 – TIME 2 Hours

Name:	Adm No:
Candidate's Signature:	Date :/06/2021.

INSTRUCTIONS TO CANDIDATES:

- Write your **name**, **admission number** and **date** in the spaces provided above.
- This paper consists of **two** sections; **A** and **B**.
- Answer all the questions in section A and B in the spaces provided
- All working **must** be clearly shown.
- Mathematical tables and electronic calculators may be used.
- Candidates should answer the questions in **English**.

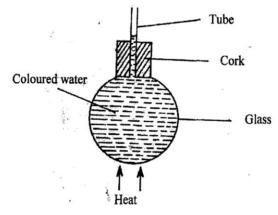
Take: $g = 10 \text{m/s}^2$, density of water = 1000kg/m^3 . density of alcohol = 800kg/m^3 .

For Examiner's Use Only:

SECTION	QUESTIONS	MAXIMUM	CANDIDATE'S
		SCORE	SCORE
\mathbf{A}	1 – 12	25	
В	13	10	
	14	15	
	15	8	
	16	11	
	17	7	
TO	TAL	80	

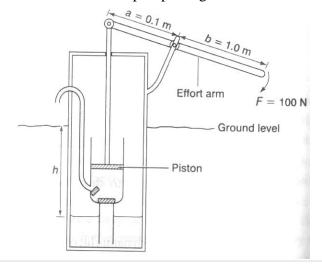
This paper consists of 11 printed pages. Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

<u>SECTION A (25 MARKS)</u> <u>Answer ALL questions in this section.</u>

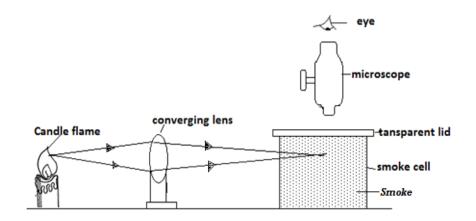

1.	Nar mat	me the branch of Physics which deals with the kinetic energy within the meter.	olecules of (1 mark)
2.	The	e diagram below shows a micrometer screw gauge with its jaws closed.	
		0-10 5 0-45	
	a)	Identify the zero error in the instrument.	(1 mark)
	b)	The above instrument was then used to measure the thickness of a ball bear	(2 marks)
3.		density bottle was used to measure the density of a liquid L and the asurements were taken.	following
		 Mass of empty density bottle = 26.0g. Mass of density bottle filled with alcohol = 66.0g. Mass of density bottle filled with liquid L = 86.0g. culate the density of liquid L. 	(2 marks)

- 4. A group of form 2 students investigated the springs used as shock absorbers in a lorry and those used in a motor cycle. State two physical features differentiating the two types of springs.

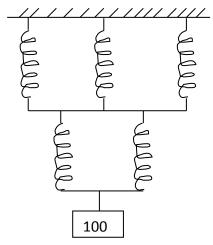
 (2 marks)


 5. Explain how the position of the centre of gravity of a body determines whether it is in *stable* or *unstable* equilibrium.

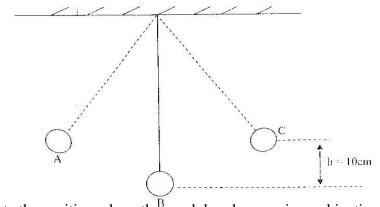
 (2 marks)
- 6. In the setup shown below, it is observed that the level of the liquid in the tube initially drops before starting to rise.


Explain this observation.	(2 marks)

7. The diagram below shows a water pump designed to raise to raise water from a well.


a)	Determine the maximum force on the piston when a force of $100N$ is appoint of the effort arm during the downward stroke.	lied at the end (2 marks)
b)	The diameter of the piston is 5 <i>cm</i> , determine the pressure exerted by the water.	piston on the (2 marks)
. Sta 	te two ways of reducing the surface tension of a liquid.	(2 marks)
	student carried out an experiment to measure static friction using identical vanged as shown in the figure below. Block of wood	wooden blocks
Blo	ck of wood Spring Spring	Fore
	Bench te and explain which spring, A or B, will indicate a smaller reading when rts to move.	(2 marks)
 0. A 1	nurse wanted to sterilize a clinical thermometer using steam from boiling wolain whether this method is appropriate or not.	ater. State and (2 marks)

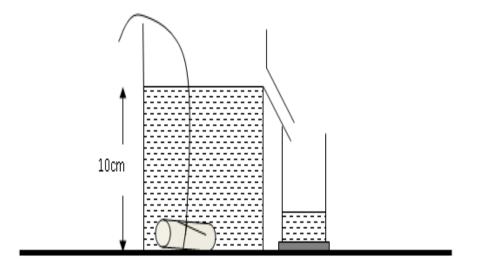
11. Stat	e <i>two</i> assumptions in fluid flow.	(2 marks)
	en a steel ball is allowed to fall freely in a viscous fluid, it is observed to attain scity after some time. State the reason why the ball attains terminal velocity.	n terminal (1 mark)
Answe	SECTION B (55 MARKS) ALL questions in this section	
13. (a)	The figure below shows an experimental set-up for estimating the diameter of a molecule.	n oil
	Tray Water Oil path Lycopodium powder	
(i	Wooden planks Describe how the oil patch is formed.	(2 marks)
(i	State one source of error that can arise while performing the experiment.	(1 mark)
(b)	What is <i>Brownian motion</i> ?	(1 mark)
	The figure shows a set-up used to study Brownian motion in gases	


	(i)	State the reason why smoke is preferred to be used in the experiment.	
	(ii)	State the function of the microscope.	(1 mark)
	(iii)	State and explain the nature of the smoke particle in the cell.	(2 marks)
	(iii)	What observation would be made if the temperature of the sur	
		reduced?	(1 mark)
		one assumption in the kinetic theory of gases.	(1 mark)
14.			
	(a) State	Hooke's law.	(1 mark)

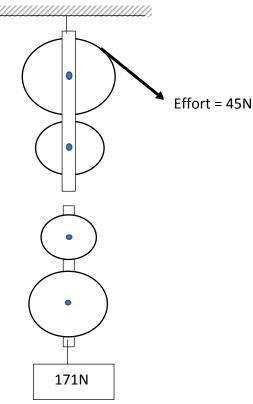
(b) A single spring stretches by 2cm when supporting a load of 50N. The system below consists of such identical springs with negligible weights attached to a load of 100N.

(i)	Calculate the total extension of the system.	(3 marks)

(c) The diagram below shows a freely swinging pendulum through points A, B and C. The maximum vertical displacement of the bob is h = 10cm.


(i) State the position where the pendulum has maximum kinetic energy. (1 mark)

(ii) Determine the velocity of the bob at the position identified in (i) above. (2 marks)


(a) Different (b) A paper to The figure	iate between speed and velocity. cape was attached to a moving trolley below shows a section of the tape. The ency of the ticker-timer is 100Hz.	and allowed to r	 (1 mark)
5. (a) Different (b) A paper to The figure	iate between speed and velocity. ape was attached to a moving trolley below shows a section of the tape.	and allowed to r	 (1 mark)
 5. (a) Different	iate between speed and velocity.		 (1 mark)
iii) T 			 , ,
ii) T 	he distance moved by the vehicles aft		

(ii)	The average acceleration of the trolley.	(3 marks)
16. (a) State t	the <i>Pascal's principle</i> of transmission of pressure.	(1 mark)
(b) The fi	gure below shows a hydraulic brake system.	
Rox Land	podal polal polal master Cylinder 5000N	To the Wheel
	rce of 20N is applied on the foot pedal connected to a piston of a es a stopping force of 5000N on one wheel. Calculate: The pressure on the master cylinder.	(2 marks)
(ii)	The area of the slave piston.	(2 marks)

(c) A Eureka can of mass 60g and cross-sectional area of $60cm^3$ is filled with water of density $1g/cm^3$. A piece of steel of mass 20g and density $8g/cm^3$ is lowered carefully into the can as shown.

Calci	ulate:	
i)	The total mass of water and the Eureka can before the metal was lowered.	
ii)	The volume of the water that overflowed.	
,		
iii)	The final mass of the Eureka can and its contents.	(2 marks)
17. (a) S	tate the law of conservation of energy.	(1 mark)
(b) T	The diagram below shows a section of block and tackle. An effort force of 45 haise a load of 171 N.	

- (i) Complete the diagram by showing how the rope is connected to pass through all the pulley wheels. (1 mark)
- (ii) Determine the velocity ratio (V.R) of the block and tackle. (1 mark)
- (iii) Calculate the mechanical advantage (M.A) of the machine. (1 mark)
- (iv) Calculate the efficiency of the machine. (2 marks)

(v) State the reason why the efficiency of the block and tackle is not 100%. (1 mark)

THIS IS THE LAST PRINTED PAGE