
FORM TWO MATHEMATICS END OF YEAR EXAMS - 20

TIME: 2 HOURS

Attempt all the questions in the spaces provided.

1. Two spheres have surface areas of 36cm2 and 49cm2. If the volume of the smaller sphere is 20.2cm3 Two spheres have surface and calculate the volume of the larger one.

Yes: $f = (L \cdot f)^3$

Using mathematical tables, evaluate:

(4 mks)

3. Simplify the expression below

$$3a + 2ab - 6b - a^{2}$$

$$N = 6b + 2ab - 3a - 9^{2}$$

$$2b(3+9) - 9(3+9)$$

$$(2b-9)(3+9)$$

$$D = 3q - q^{2} + 2qb - 6b$$

$$q(3-q) + 2b(q-3)$$

$$(q+2b)(3-q)$$

3. Simplify the expression below
$$\frac{6b + 2ab - 3a - a^{2}}{3a + 2ab - 6b - a^{2}}$$

$$N = (b + 2ab - 3a - a^{2})$$

$$2b(3 + a) - a(3 + a)$$

$$(2b - a)(3 + a)$$

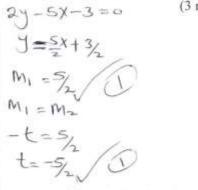
$$(3a - a)(a - 2b)$$

$$(3a - a)(a - 2ab)$$

$$(3a - a)(a - 2ab)$$

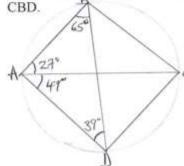
$$=\frac{-3+\alpha}{3-\alpha}$$

4. If $4^{3y-4x} = 64$ and $3^y \div 9^x = 1$, solve for x and Y.


$$4^{3}y^{-4x} = 4^{3}$$
 $3y^{-4x} = 3^{3}$
 $3^{3} + 3^{2x} = 3^{3}$
 $y^{-2x} = 0$
 $3y^{-4x} = 3^{-6}$
 $y^{-2x} = 0$

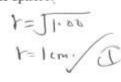
$$3(2X) - 4X = 3$$

 $6X - 4X = 6$ T
 $2X = 6$
 $X = 6$
 $Y = 2(6)$

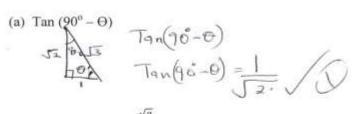

5. Find the values of h and t if the line whose equation is 3h + 5x - 2y = 0 passes through the point (5, 17) and is parallel to the line y + tx + 3 = 0. (3 mks)

$$\frac{1}{3} = 0.$$

$$\frac{1}$$


6. In the figure below, angle CAB = 27°, angle ABD = 65° and angle DB = 39°. Find the size of angle (3 mks)

7. Common salt has a density of 2.2g/cm3 while sand has a density of 3.2g/cm3. If 0.8kg of salt is mixed (3 mks)

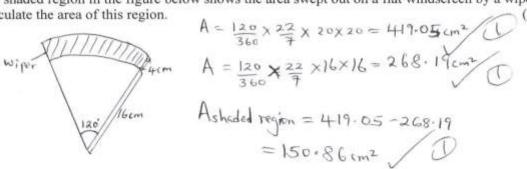

8. The volume of water in a measuring cylinder is 25.2cm3. After a solid metal sphere is immersed into it, the measuring cylinder reads 29.4cm3. Calculate the radius of the sphere. (3 mks)

$$4.2 = \frac{88}{21} + 3$$

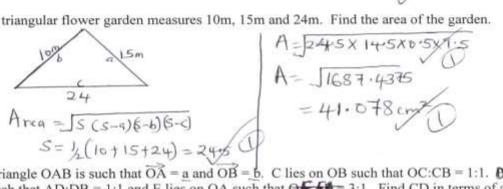
 $4.2 \times \frac{21}{88} = 1^3$
 $1.80 \times 10^3 = 1.80 \times 10^3$

9. $\cos \Theta = \underline{1}$ where Θ is an acute angle. Without using mathematical tables, find;

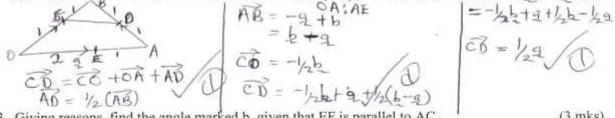
(1 mk)



(b) Sin Θ in the form $\frac{\sqrt{a}}{\sqrt{b}}$ where a and b are integers. (2 mks)


$$Sin\Theta = \frac{OPP}{HYP} = \frac{\sqrt{2}}{\sqrt{3}}$$

$$Sin\Theta = \frac{\sqrt{2}}{\sqrt{3}}$$


 The shaded region in the figure below shows the area swept out on a flat windscreen by a wiper. Calculate the area of this region.

11. A triangular flower garden measures 10m, 15m and 24m. Find the area of the garden. (3 mks)

12. Triangle OAB is such that OA = a and OB = b. C lies on OB such that OC:CB = 1:1. B lies on AB such that AD:DB = 1:1 and E lies on OA such that OE = 3:1. Find CD in terms of a and b.(3 mks)

13. Giving reasons, find the angle marked b, given that EF is parallel to AC 180°-110°=70° (Angles of a Δ add up to 180°) b= 180°-70° = 110° (Ls on a straightlying add up to 180°)

SECTION B: (30 MARKS)

Answer any three questions in this section.

14. The height (in cm) of some seedlings in a nursery are recorded in the table below.

Height (cm)	1.0 - 1.4	1.5 - 1.9	2.0 - 2.4	2.5 - 2.9
No. of seedlings	2	6	4	8
CF	2	8	12	20

(a) State the median class

Median dagg = 2.0-2.4

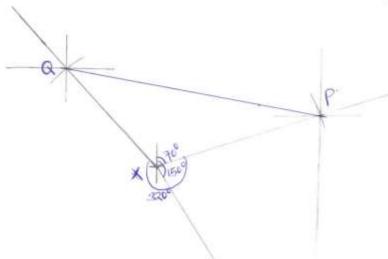
(b) Calculate the mean height of the seedlings in the nursery.

(1 mk)

(c) On the grid provided, draw a histogram and a frequency polygon to represent the information.

(5 mks)

On the graph paper provided, plot the triangle whose co-ordinates are A(1, 3) B(2, 1) and C(3, 4).
 (1 mk)


(a) On the same grid, draw;

- A'B'C' the image of ABC under an enlargement, centre (0,0), scale factor -1 and state its coordinates.
 (3 mks)
- (ii) A"B"C" the image of A'B'C' under a rotation of +90 about origin. State the co-ordinates of A"B"C".(3 mks)
- 16. Three warships P,Q and R leave port X at 9.00 a.m. Ship P sails at a steady speed on a bearing of 070°, 100km from port X while ship Q sails on a bearing of 320°, 80km from port X. Ship R is on a bearing of 1500 from port X and due south of ship P.

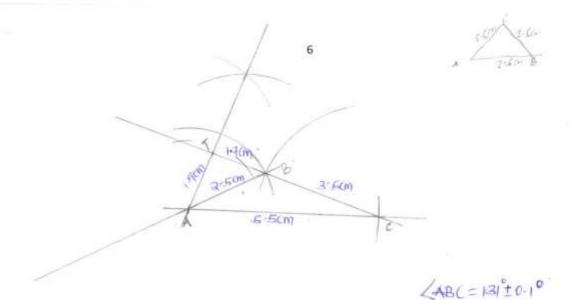
(a) Construct a scale drawing to show the position of P, Q, R and X.

(Cale icm xep 20Km

- (b) Use the scale drawing to determine:
 - (i) The distance and bearing of ship P from ship Q.

(2 mks)

(ii) The distance of ship R from port X.

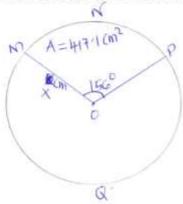

R

(2 mks)

(iii) The distance of ship R from ship P.

(2 mks)

17. (a) Use a ruler and a pair of compasses only to construct triangle ABC such that AB = 2.5cm, BC = 3.5cm and AC = 5.5cm. Measure < ABC. (3 mks)



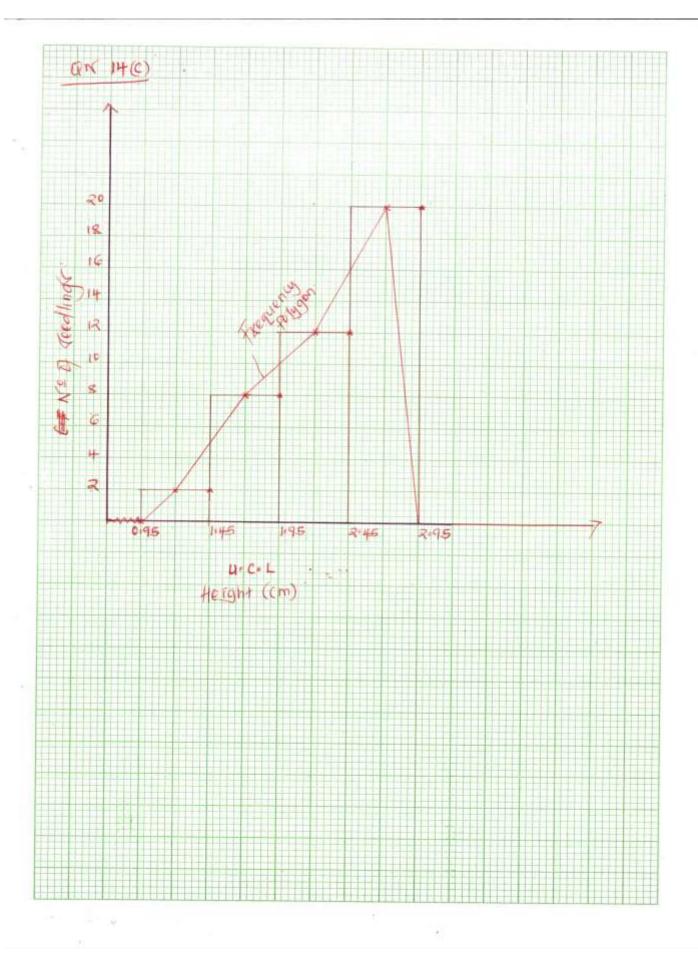
(b) Drop a perpendicular from A to a point T on CB produced. Measure the length AT. (3 mks)

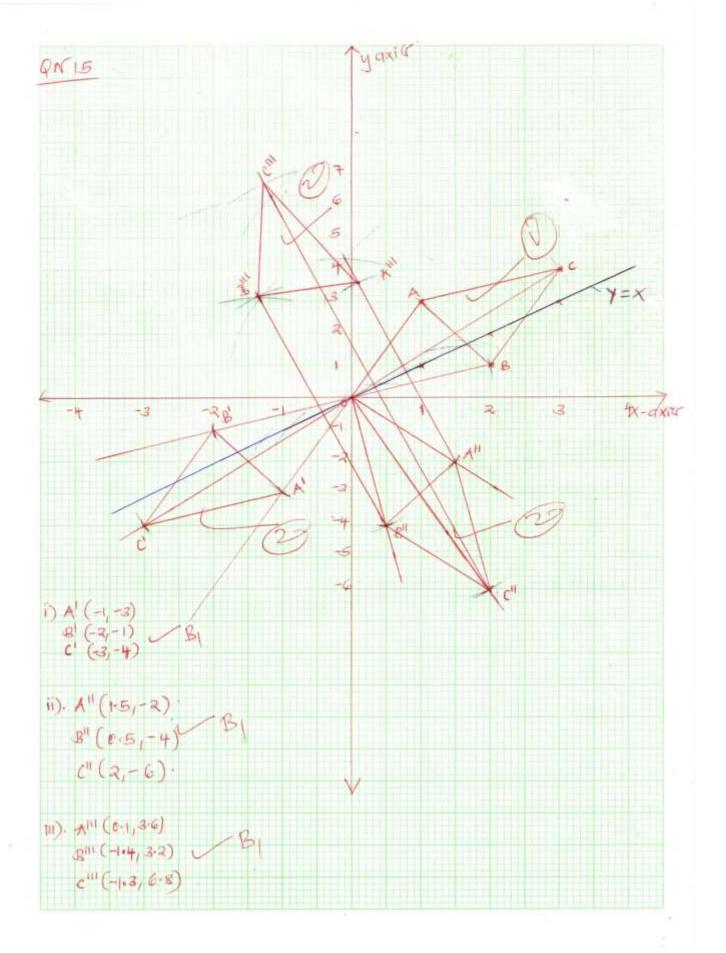
AT= 1-9cm (4 mks) (c) With BT as the base, calculate the area of triangle ABT and triangle ACT.

A(ART) = 1.615 (m) (2) = 4.94 cm2 (

 The circle in figure below has a radius Xcm and centre O. Minor arc MNP subtends an angle of 156° at the centre of the circle. Sector MNP has an area of 417.1cm2

(a) Taking $\pi = \frac{22}{7}$, find x. $\Lambda = \frac{6}{2} \times 11 \times 12$ (3 mks) (b) The major sector MQP is obtained from the circle and folded into a cone. Find:


(2 mks) (i) The radius of the cone's base.


(iii) The height of the cone.

(2 mks) h = 14 - 419 (m)(iii) The surface area of the cone.

(3 mks)

= R3x9.917x9.917) + (37x9.917x17=5) = 854.5252 cm²

